CONJUNCTIONS, DISJUNCTIONS AND LEWISIAN
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ABSTRACT. Consider the reasonable axioms of subjunctive condi-
tionals (1) if po— ¢; and po— g2 at some world, then po— (¢1 & g2)
at that world, and (2) if p; o~ ¢ and ps o— ¢ at some world, then
(p1 V p2) o~ ¢ at that world, where p o— ¢ is the subjunctive con-
ditional. I show that a Lewis-style semantics for subjunctive con-
ditionals satisfies these axioms if and only if one makes a certain
technical assumption about the closeness relation, an assumption
that is probably false. I will then show how Lewisian semantics
can be modified so as to assure (1) and (2) even when the techni-
cal assumption fails, and in fact in one sense the semantics actually
becomes simpler then. I also give necessary and sufficient condi-
tions on the closeness relation for the validity of the subjunctive
conditional law of excluded middle (po— q) V (p o= ~q).

1. INTRODUCTION

Write p o— ¢ for the subjunctive conditional that were p to hold, q
would hold. On David Lewis’s semantics for subjunctive conditionals,
p o— ¢q holds if and only if either

(a) There is no possible world at which p holds, or
(b) There is a possible world w; at which both p and ¢ hold and which
is such that any world wy at which both p and ~ ¢ hold is further

from the actual world than w; is.

Now, the following two potential axioms of subjunctive logic:

(1) (po=q1) &(po— q) at w D (po— (1 & q2)) at w
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and

(2) (p1 0= q) &(p2o— q) at w D ((p1 V p2) o= q) at w,

where D is material implication, are very plausible. For, the subjunc-
tive conditional says what would happen were some condition realized.
If under that condition ¢; would hold and under that condition g would
hold, then surely under that condition ¢; & ¢> would also hold. Like-
wise, if some proposition would hold under one condition and would
also hold under another condition, then it is hard to deny that it would
hold under the disjunction of these two conditions. Axioms (1) and (2)
simply say that this intuition is correct at w.

One way to argue for the intuition is to use the Lewisian duality
between the would conditional o— and the might conditional +— ac-
cording to which duality pe— ¢ holds if and only if ~(po— ~ ¢q) does: if
q might hold were p to hold, then it is not the case that were p to hold,
~ q would hold, and conversely. According to this duality, axiom (1)
says that if Po— (Q1V Q2) at w, then we cannot have both Po— ~ Q4
and Po—~ Q2 at w. And, after all, how could it be the case that under
some condition neither disjunct would happen, but with it still being
the case that under that condition the disjunction might happen? A
dual formulation of (2) says that if (P, V Py) e— @ at w, then we do not
have both P,o— @ and P,o— (@ at w, which is also plausible. I will add
that as far as my intuitions go, (1) is more plausible than (2), though
we shall see that under some plausible background assumptions, both

axioms are equivalent.
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I will derive necessary and sufficient conditions on the closeness re-
lation for (1) and (2) to hold and argue that most likely these condi-
tions are not satisfied. Given the high plausibility of these axioms, we
should reject Lewisian semantics. Fortunately, I will show that there
is an attractive modification of Lewisian semantics that verifies these
two axioms.

More precisely, let a frame be a quadruple (W, P, T, <), where W
(“worlds”) and P (“propositions”) are sets, T (“truth-at”) is a relation
between members of P and members of W, and for every member w of
W, <, (“closeness”) is a relation between members of W, where the

following natural axioms hold:

(c) there is a map A from the powerset of W to P such that if S C W,
then wT(AS) holds if and only if w € S;

(d) there are maps & : Px P — P,V:Px P — P,and ~: P — P
such that Tpeq = T, N Ty, Tpvg = T,UT, and T.., = W\T,, where
T, ={weW:pTw};

(e) <, is transitive, i.e., a <, f and f <, 7 imply a <, 7;

(f) <4 is asymmetric, i.e., if @ <, 8 then not 8 <, a; and

(g) <u has the property that w <, w' for every w' # w,

By abuse of notation I will write Az for A{x}.

The intended interpretation is that W is the worlds, P is the propo-
sitions, T is the truth-at relation that holds between a proposition and
a world provided the proposition is true at that world, and w; <, wo

holds provided that w; is closer to w than w, is. Because of this, I will
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at times say that p € P is “possible” provided there is a w € W such
that pTw, and will say in such a case that p “holds at w”. Then, (c)
says that for any countable set of worlds there is a proposition assert-
ing that some world from that set is actual, (d) asserts that one can
conjoin, disjoin and negate propositions, while (e)—(f) are extremely
reasonable conditions we would want <, to satisfy if were it to have
any chance of counting as the closeness relation. Note that in fact (d)
follows from (c).

If one wishes to follow Lewis in assuming that propositions just are
sets of worlds, one can let P be the powerset of W, and define pTw to
hold if and only if w € p.

Note that there are some technical difficulties if one thinks with
Pruss (2001) that the collection of all worlds is not a set. If so, then
W will not be all worlds, but some relevant set of them, and P will not
be all propositions, but again some relevant set of them.

Given a frame (W, P, T, <), we can define the Lewisian counterfac-

tual by saying that

(po—q) at w

holds for p and ¢ in P and w in W if and only if either there is no

w; € W such that pTw,, or there is a wy; € W satisfying pTw; and

q Tw; and such that w; <, ws for all wy such that pTw, and ¢ T ws,.
The closeness relation in the intended interpretation on Lewis’s view

is qualitative similarity of worlds, with a greater weight being placed
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on nomic similarity than on similarity of particular fact (Lewis, 1979).
This makes (e)—(g) very plausible.

I will argue that on some highly plausible judgments about closeness,
it is implausible that (1) and (2) hold under the intended interpretation.
In fact, I will give necessary and sufficient conditions for a frame to
verify axioms (1) and (2), and show that this condition is not met on
some very reasonable interpretations of the closeness relation.

It is important to note that Lewis’s own assumptions about the <,
relations do imply that these necessary and sufficient conditions are
met. However, this only means that Lewis’s assumptions about what
the <, relations are likely false. Fortunately, Lewis’s semantics can
be modified so that (1) and (2) hold despite these assumptions being
false, as we shall eventually see.

As the above formulation shows, I am assuming S5 throughout.

2. A NECESSARY AND SUFFICIENT CONDITION FOR (1) AND (2)

Given a frame (W, P, T, <), we say that “the closenesses of w; and
wsy to a world w are incommensurable”, or more briefly that “w; and
wy are w-incommensurable” | and write w; ~,, ws, providing that none
of the following three conditions hold: w; <, wy or wy <, w; or
wy = ws. It is plausible that w-incommensurability in fact happens. If
wy is the actual world, then plausibly a world just like ours but with
the moon being made of blue cheese and a world just like ours but with

the moon being made of camembert are w-incommensurable. I will say
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that “there are incommensurable worlds” (relative to a frame) provided
there are wq, wy and w such that w; and w, are w-incommensurable.
It is an easy exercise for the reader to verify that if w; and w, are w-
incommensurable, then it is neither true at w that (Aw; V Awy)o— Aw,
nor that (Aw; V Aw,) o— ~ Aw; on Lewis-style semantics. Hence, w-
incommensurable worlds would provide a Lewisian counterexample to
the subjunctive conditional law of excluded middle which claims that,
necessarily, for any propositions p and ¢, either po— q or po— ~gq.
The notion of incommensurability lets us characterize when (1) and

(2) hold.

Theorem 1. The following conditions on a frame are equivalent:

(i) Aziom (1) holds for all p and q in P and every w in W;
(i1) Aziom (2) holds for all p and q in P and every w in W,
(iii) For every quintuple of worlds o, 3, v, 0 and w if a <, B and

v <w 0 and B and 7y are w-incommensurable, then a <, 6.

In particular, if there are no incommensurable worlds, (1) and (2)
hold. I will call the final condition in the Theorem the “quintuple
condition.” It can be thought of as a transitivity-type of condition. If
incommensurable pairs of worlds satisfied the same order relations so
that a <,, § if and only if o' <, ' whenever o ~,, o' and 8 ~,, 3.
The proof of the Theorem will be given in Section 6.

Lewis’s own axiomatization is such as to imply the quintuple condi-

tion in our notation and hence yield (1) and (2). We shall now proceed
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to argue on intuitive grounds that on the intended interpretation the

quintuple condition fails.

3. THE QUINTUPLE CONDITION

3.1. Numerical closeness. The quintuple condition would hold if
there were some function ¢ that assigned a number (or more generally
an element of some totally ordered set) to every pair of worlds w; and
wy in such a way that w; <, ws held if and only if ¢(w, wy) < e(w, w,).
One thinks of calculating, say, the volume of space-time (using some
non-standard version of arithmetic to handle infinities here) in which
there are any difference between w and w; and calling it ¢(w, wy).

For if there were some such a numerical assignment, $ and v would
be w-incommensurable if and only if ¢(w, 8) = c(w,v). If a <, B and
¥ < 0, then c(w,a) < ¢(w,B) and c(w,7y) < c(w,d) and it would
follow then that c¢(w,a) < c¢(w,d) and hence o <,, 4. It is tempt-
ing to think of the closeness of worlds as having such a numerical (or
quasi-numerical in the general totally ordered set case) measure, so
that w-incommensurability can become assimilated to the claim that
two worlds are equally close to w because, e.g., they are in some way
indistinguishable. If that were so, then the quintuple condition would
hold.

With a single numerical assignment, w-incommensurability sim-
ply means equal distance. On the multiple parameter approach, w-

incommensurability means either equal distance or incomparability. I
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will now give two arguments for the multiple parameter approach, first
one with numerical and the one with non-numerical parameters, each
of which will yield a plausible counterexample to the quintuple condi-
tion, and then I shall give a third counterexample that involves worlds

with an infinite number of objects.

3.2. Multiple parameter. It isimplausible that there should be such
a numerical assignment of closenessses that yields the truth of the quin-
tuple condition. In general, we would expect a multiple-parameter way
of measuring closeness. Thus, to a pair of worlds a and [ one might
have to assign an n-tuple of numbers, c(a, 8) = {(c1(a, B), ..., ca(a, B)),
each coordinate of which measures the closeness in some respect be-
tween these two worlds. If the multiple parameters are not reducible to
a single parameter by some operation such as addition with appropriate
weights!, then then one might reasonably say that w; <, ws if and only
if for all ¢ we have ¢;(w,w;) < ¢;(w,ws) and there is some 4 such that
ci(w,w1) < ¢;(w, ws). If the closeness of worlds is multiply-parametric
in this sense, then we cannot expect to have the quintuple condition.
To see this already in the case where n = 2, observe that we should
intuitively be easily able to find a quintuple of worlds «, 3, v, § and w
such that, say, c(w,a) = (1,1), c(w, 5) = (1, 2), c(w,7y) = (2,1/2) and

c(w,d) = (2,3/4). If we can find such a quintuple, then we will have

T am grateful to an anonymous referee for this suggestion. The referee also
suggested multiplication, but that is less promising, because it would mean that
arbitrarily high degrees of closeness can be achieved simply by making two worlds
be very close merely in respect of any one parameter
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a <, B and v <y 6, and 8 and « will be incommensurable, but we will

not have a0 <y, 9.

3.3. Mimsiness and slithiness. But is it plausible that there is no
reducibility of multiple measures of closeness to a single scale? I think
so. Consider a possible world w whose denizens in addition to the
kinds of properties that denizens of our world have also have two new
basic physical properties I will call mimsiness and slithiness. Both
of these have a numerical scale to them. Thus, some particles in w
have a mimsiness of 7 mims and a slithiness of —12.4 sliths. However,
these two properties do not affect any other basic properties or one
another, in the sense that to predict what basic properties other than
mimsiness (respectively, slithiness) will be exhibited after some exper-
iment one does not need to know how mimsy any of the particles in
the experiment were. In particular, to know how mimsy (respectively,
slithy) or charged the result of some particle collision will be, we do not
need to know how slithy the incoming particles were. If one has any
verificationist qualms, we can suppose that the denizens of w observe
mimsiness and slithiness directly. There are well defined laws of nature
governing how the mimsiness of particles behaves, say, in a collision of
particles and how the slithiness of particles behaves. It might be, say,
that when one slithy particle hits another slithy one, slithiness is redis-
tributed between the particles in proportion to their respective electric

charges.
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There are, let us suppose, mimsiness and slithiness conservation laws
which hold always, and the standard conservation laws hold for all the
other properties much as they do in our world. However, because of
the way slithiness and mimsiness fail to affect one another and fail to
affect any other basic physical properties, there are no cases where some
quantity of one of the other properties, say charge, gets transformed
into some quantity of slithiness or mimsiness or where some slithiness
gets transformed into, say, charge. Because of this, there is no non-
arbitrary way to extend the measurement system for other properties
to cover slithiness and mimsiness. Slithiness may be measured in sliths
and mimsiness in mims, but the physics I assume is such that there is
no way of finding a relation between sliths and mims so as to measure
the two on a common scale or to define any sort of energy function that
includes them both. I will also assume that slithiness and mimsiness
are measured on a continuous scale, so one cannot measure mimsiness
with respect to some natural unit like “the smallest physically possible
non-zero amount of mimsiness.”

Without any physical interrelation here, any choice to combine sliths
and mims into a single scale would be ad hoc. Sure, one could measure
the overall slithiness-and-mimsiness difference between two particles
via any number of formulae, such as |s; — sa| + |m; — ms| where one
stipulates that s; is measured in sliths and m; in mims. But without
any kind of physical interrelation between the quantities, the choice

of formula is arbitrary: one could, just as well, choose |s; — s3|® +
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(m/7) arctan |m; — m2| and there is no objective fact of the matter as
to which formula is right.

Thus, we can measure how close two worlds are in terms of mim-
siness and how close they are in terms of slithiness, but there is no
way to interrelate these two measurements to come up with an overall
closeness. Now consider some very simple worlds a, 3, v, § and w, each
of which contains exactly one particle of the same type. The particle
in w has 0.1 mims and 0.1 sliths. On the other hand, the particle in «
has 1 mim and 1 slith; the particle in # has 1 mim and 2 sliths; that
in 4 has 2 mims and 0.5 sliths; that in ¢ has 2 mims and 0.75 sliths.
It is very natural then to say that a <, 8 and 7y <, §, since clearly
is more similar to w than ¢ is in terms of the slithiness of its particle
while no less similar in terms of the mimsiness of the particle, and a
corresponding thing can be said about a and . But, very plausibly, 3
and v are w-incommensurable: any choice of which one is closer to w
is ad hoc.

World S is closer to w in terms of mimsiness and world v in terms
of slithiness. But since there is no way of counting mimsiness and
slithiness on a common scale, there is no fact of the matter that S is
overall closer to w or that - is—at least if the facts about closeness
are supposed to supervene on facts about the distribution and kinds
of objects in the two worlds, as in Lewis’s system they are. But for
exactly the same reason there is no fact of the matter that « is closer

to w than § is or wvice versa. It looks at first sight as if a would
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be closer to w, since a’s particle has 1 mim and 1 slith, while §’s
has 2 mims and 0.75 sliths, so that the total difference from w in
respect of the sum total of the mimsiness/slithiness of particles in the
case of avis (1 — 0.1) + (1 — 0.1) = 1.8 while in the case of ¢ it is
(2 —-0.1) + (0.75 — 0.1) = 2.55. However, such sums make no sense,
because one cannot meaningfully add mims to sliths any more than
one can add kilograms to meters. Therefore, one has to say that o and
0 are w-incommensurable just as 8 and -y are. Hence, the quintuple
condition is violated.

The above argument is formulated in a way that is neutral between
two claims. On one view, it is a not a fact that « is closer than § and
it is not a fact that ¢ is closer than « (and similarly for S and ), but
it is a fact that neither is closer than the other. On the other view,
there simply is no fact of the matter as to which is closer. I prefer the
first formulation, but either will do to support the argument.

A crucial question here is whether it is possible to have properties
such as described above. Are they not, as one referee asked, “idle
wheels” given their lack of interaction with everything else? I respond
that they may be idle, but it does not follow that they are impossible.
Consider a three-dimensional Newtonian universe with a bunch of point
particles but no forces. Fix an arbitrary coordinate system. Each
particle then has six properties, namely the coordinate components
(z1, 22, x3) of the position and the coordinate components (p1, p2, p3)

of the momentum. The particles do not interact with one another, and
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the property-pairs (z1,p1), (z2,p2) and (z3,ps3) are such that no pair
interacts with any other pair: to know the value of (z1,p;) for a given
particle at a given time, no information about the values of (x5, ps)
and (z3,ps) for any particle at any time is of any use. Hence, it seems
possible to have a pair of properties that does not interact with any
other pair of properties. But surely nothing hangs on the distinction
between a property and a pair of properties, since we can always re-
encode a pair of quantifiable properties as a single quantifiable property,
given that the cardinality of the set of real numbers is equal to the
cardinality of the set of pairs of real numbers. Moreover, we may
assume that mimsiness comes associated with a property mimsiness*,
perhaps related to it in the way that momentum along the first axis is to
position along the first axis, and that slithiness comes associated with
slithiness*, but that mimsiness-mimsiness* pairs have no interaction
with slithiness-slithiness* pairs. In fact, depending on one’s view of
space, we might even take the analogy to be an identity, and define
mimsiness as x; and slithiness as z,.

All that said, I have no solid positive argument for the possibility
of something like mimsiness and slithiness. But the possibility seems

plausible. We can, however, do a little better, with a bit of handwaving.

3.4. Artists and mathematicians. Let w be the actual world. Con-
sider a sequence of worlds slightly modified from w. Let o be a world
where some world-historically unimportant Joe Shmoe was a better

mathematician than and equally good artist as he is in w. Let [ be a
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world where he is an even better mathematician than in w and just as
good an artist. Let v be a world where he is no better a mathematician
than he is in the actual world but where he is a somewhat better artist.
Let 0 be a world where he is no better a mathematician but an even
better artist than in . Then, a <,, § and § <, . But unless there is
some non-arbitrary single way of measuring artistry and mathematical
ability, which presumably there is not, neither of 8 and -y is closer to
the actual world, and hence they are incommensurable. But so are «
and 4.

It is tempting to say that as I described things, it might be that
Joe Shmoe is a better artist in ¢ than he is a mathematician in «,
but in fact there is no way of comparing artists and chess players—
they may well be incommensurable, except perhaps in some “extreme”
cases. Perhaps we can say that Hitler was a worse artist than Newton
a mathematician, but there is no fact of the matter that Newton was
a better mathematician than Michelangelo an artist or vice versa. One
might hypothesize, for instance, that we have a single notion of “ge-
nius”, and we deem the non-genius to be worse in her special field than
the genius in hers, even if the two fields of expertise are as different as
painting and mathematics, but we do not have any objective way of
ranking geniuses across fields of specialty, perhaps even within fields
of specialty (a referee suggests that neither was Godel was the better
logician than Tarski nor vice versa), and we have no objective way of

ranking mid-range experts across fields. Whatever the explanation, it
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is plausible that we cannot make claims as that Joe Shmoe is a better
artist in 6 than he is a mathematician in «, as long as he is close to
the mid-range in both fields in both worlds.

One might object that one can rank people within different fields on
a uniform scale by using percentile ranks. How much better = is at
activity A in w; than y is at B in w, is determined by the percentile
rank of z among doers of A in w; and the percentile rank of y among
doers of B in ws. But that cannot be right, first, because there is
no way of ranking geniuses even within a single field, and, second,
because excellence is not a relative term. Salieri would not have been a
greater composer had Mozart simply turned his talents to long-distance
running instead, even though Salieri’s percentile rank would have been

higher.

3.5. The line of balls. For the third counterexample to the quintuple
principle, I will begin with the simplest formulation, and then we will
add some possible complications. Let w be a Newtonian world with-
out gravity. Rigidly fix an arbitrary unit and coordinate system. Sup-
pose that the only physical objects the world contains are indiscernible,
uniform, rigid balls of radius 0.01 The balls persist motionlessly for all
times ¢t between —oo and +o00, and are centered at coordinates (n, 0, 0),
where n ranges over the integers. Thus, there is a line of balls, spaced
one unit a part, infinite in extent in both directions. I will call the ball

at (n,0,0) “ball number n”.
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Now, worlds a, 3, v and ¢ will all be just like w except that each
has only a subset of the balls. Specifically, in «, we only have all and
only those balls that are at coordinates (n,0,0) with n < —5. In 3, we
have all and only those balls at (n,0,0) with n < —10. In v, we have
all and only those balls at (n,0,0) with n > 5. Finally, in §, we have
all and only those balls that are at (n,0,0) with n > 10.

Then, a <,, 8 because o and [ have the same laws of nature, but «
precisely coincides with w in a strictly greater area of space-time than
B does. For exactly the same reasons, v <, d, as vy precisely coincides
with w in a strictly greater area of space-time than (5 does. Recall
that Lewis (1979) lists the spatio-temporal extent of exact coincidence
as the second-most important criterion of closeness of worlds, after
coincidence of laws, so this is not only intuitively true, but agrees with
Lewis’s explicit criteria.

The hardest part is now to show that 8 and v are w-incommensurable
and that so are a and d. Take first the case of 5 and . Observe that
the extent of spatio-temporal coincidence with w is exactly the same
for both # and . Both 8 and v have a semi-infinite line of balls. In the
case of 3, the line stretches in the negative direction along the z-axis.
In the case of +, it stretches in the positive direction along the z-axis.
Neither line of balls is a subset of the other, as was the case between «
and (3 or between v and 4. In fact, 5 and  have no balls in common.
The set of the coordinates of the centers of the balls in 3 is simply the

reflection in the plane z = —5/2 of the set of the coordinates of the
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balls in v. We thus have a complete symmetry between the ways in
which [ is similar to w and the ways in which ~ is similar to w, and
we must conclude that neither can 8 be closer to w than + is, nor can
v be closer to w than g is.

And of course it would be mistaken to say that ~y is closer to w than
B is because 7 contains balls numbered 5,6,7,8,9,10,11,12, ... while
B contains fewer balls, having only those numbered —10, —11, —12, ....
For, after all, both sets of numbers contain exactly the same number
of entries where the size of a set is measured in terms of cardinality,
while if one uses containment-based considerations to measure the size
of a set, then neither is larger than the other because in fact they have
no elements in common.

Nor would it do to argue that 7 is closer to w than [ is because «
is closer to w than f is, and ~y is just a reflection of a about the plane
x = 0 so v and a must be equidistant to w. For, in exactly the same
sense, 7 is just a reflection of § about the plane z = —5/2; and so
by the same reasoning they should be equidistant to w, unless there is
“something special” about the plane x = 0. But the coordinate system
is arbitrary and so there is nothing special about that plane over and
beyond other planes.

Hence, § and v are w-incommensurable. By exactly the same reason-
ing, @ and ¢ are w-incommensurable: each coincides with w in respect
of a semi-infinite line of balls, as well as everywhere outside the balls of

w, and the two semi-infinite lines of balls have no entries in common.
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Therefore, we have a <,, 8 and v <, ¢, while § and ~ are w-
incommensurable, and o and ¢ are also w-incommensurable. Hence,
the quintuple condition fails, and so Lewis’s semantics fails to yield (1)
or (2).

Objection 1. The conclusion that o <,, 5 (or, mutatis mutandis, that
v < 0) was overhasty. After all, both « and  agree with w along a
semi-infinite line of balls, and everywhere outside the balls of w. Thus,
they each agree with respect to precisely Ny balls.

However, as we already saw above, cardinality is not the only way of
comparing sets. Containment considerations are also applicable, and
the balls of « are a strict superset of the balls of 3, while the spatio-
temporal area of disagreement between o and w is a strict subset of
the spatio-temporal area of disagreement between S and w.

And in fact, assuming Lewis’s semantics for counterfactuals, we can
give the following argument for a being closer to w than  is. Given the
Newtonian laws and the arrangement above, the existence of each of
the balls in w is causally independent of the existence of the other ones
(if one is a theist who thinks that God necessarily exists, then one will
say they all have a common cause, but that is all). Now, let w,, be a
world just like w but only containing those balls at (n, 0, 0) for n < m.
The causal independence claim then implies that, for each m, it is true
that were balls number m—+1, m+2, m—+3, ... not to have existed, balls
number m,m — 1,m — 2,... would still have existed. Moreover, it is

highly plausible that were balls number m + 1, m + 2, m + 3, ... not to
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have existed, then it is precisely world w,, that would have been actual.
But, given Lewis’s semantics for counterfactuals, this implies that w,,
is the closest world to w at which balls number m+1,m +2,m+ 3, ...
do not exist. In particular, it follows that w,, <, Wm_1. Since m was
arbitrary, it follows that in general w,, <, w, whenever n < m. Since
a=w_5 and f = w_qg, it follows that a <, B.

Objection 2. The original set-up supposed Newtonian laws to hold
in all the worlds under consideration. But David Lewis thought that
laws were statements that would appear in a description of the world
that best balances informativeness and brevity. Newtonian laws would
not appear in such a description of w. Moreover, perhaps, different
laws would hold in w, on the one hand, and in «, (3, v and 4, since the
optimal description of w might say that there is a doubly-infinite line
of balls.

All the above is true on Lewis’s controversial account of laws. How-
ever, it does not affect the argument. For while above I did indeed
assume for simplicity that w, a, 3, v and ¢ all have the same laws, all
I need is the weaker assumption that the laws of no one of a, 3, v and
0 are closer to those of w than the laws of any other one of those four
worlds.

Objection 3. The argument assumes that one can identify balls and
positions in space-time across possible worlds even though the balls
and positions are in fact indiscernible. This is unfair as part of an

argument against a counterpart theorist like Lewis.
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Two responses can be made. First, in a Lewisian framework one
can have a context-dependent counterpart relation. Once one fixes an
appropriate such relation, one with the property that counterparts of
a pair of balls are the same distance apart as the original two balls, the
above construction works as long as distinct indiscernibles are possible.

Second, one can simply mark up all the balls in w in some insignifi-
cant way. For instance, one might suppose that each ball in w has two
red dots on it, with every ball having its dots at a different distance
apart. Thus, each ball has a distinct property: its “dot-distance”. The
crucial thing to ensure is that pairs of worlds w; and ws that consist of
disjoint half-lines of balls be w-incommensurable—this condition will
ensure that once we construct «, 3, v and d we will have the crucial
w-incommensurability of a and ¢ as well as that of 5 and ~.

One might conceivably lose the incommensurability if there is some
kind of lawlike pattern to the dot-distances as a function of ball number
in w, a lawlike pattern that somehow ensures that, say, « is closer in law
to w than ¢ is, if laws supervene on lawlike patterns, as Lewis thought.
However, it is plausible that things can be arranged so that there is
no such lawlike pattern, say by ensuring that the dot-distances as a
function of ball number are distributed in such a sufficiently random

way.

3.6. What follows. Given the above counterexamples to the quintu-

ple condition and given Theorem 1, it follows that the highly plausible
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axioms (1) and (2) are false on Lewis-style semantics if one makes plau-
sible assumptions about the results of closeness measurements. Now,
Lewis himself thought that the closeness relation is going to be such as
to ground (1) and (2). Lewis’s own assumptions about the closeness
relation (Lewis, 1973, 14) can easily be proved to be equivalent to the
following list:

(h) For all a # w, w <y a;

(i) the relation <, is transitive;

(j) w-incommensurability is transitive; and

(k) the quintuple condition holds.
By our Theorem, it does follow from these that (1) and (2) hold.

Since (k) is false under the a very plausible interpretation of the
closeness relation, there is a problem here for Lewis’s account of coun-
terfactuals. Either the system makes an implausible assumption about
the closeness relation, or else the system does not satisfy the highly

intuitive axioms (1) and (2).
4. A PARTIAL SOLUTION

Fortunately, there is a fairly simple and natural solution. Before we
give it, let us look at what the failure of (1) and (2) looks like.

A strong failure of (1) would be a case where po—¢q; at w and po—go
at w while po—~(q; & ¢2) at w, even though p is possible. Such a thing
cannot in fact occur if p is possible on our standard assumptions (e)—(g)

about <, even without the quintuple condition.
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Theorem 2. Given a frame, there cannot be a strong failure of (1) or

of (2). In other words:

(i) If po> q1 at w, po— ¢ at w and p o~ ~(q1 & q2), then p is
impossible.
(ii) If py o= q at w, poo— q at w and (p; V p2) o= ~q, then p; V ps is

impossible.

Because the failure of (1) and (2) is not very severe, there is hope for
an extension of Lewis’s semantics for subjunctive conditionals such that
if po— ¢ is true on Lewis’s semantics, it remains true on the modified
semantics, and such that if p o— ~ ¢ is true on Lewis’s semantics, it is
not the case that p o— ¢ on the modified semantics. Such a semantics
can in fact be given, assuming as always our conditions (c¢)—(g) from
Section 1. Let us say, given a frame (W, P, T, <), that po—* g at w

provided:

(1) For any world w; such that pTw; and (~ q)Twy, there is a world
wy such that pTwy and gTwsy, with the properties that wy <,
wy and there is no world ws such that all three of the following

conditions hold: w; <, ws, pTws and (~ q) Tws.

Observe how this definition has the advantage over Lewis’s in that the
case where p is impossible is not being treated separately. It is simpler

in the sense of not being disjunctive.
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Theorem 3. If po— q at w, then po—*q at w, and if po—*q at w
and po—* ~q at w, then p is impossible, i.e., there is no w' such that

pTw'. Moreover, (1) and (2) hold with o—* in place of o—.

The proof is given in Section 6.

5. PHILOSOPHICAL CONCLUSIONS

Lewis’s subjunctive conditional behaves poorly with respect to finite
conjunctions of consequents and disjunctions of antecedents on reason-
able assumptions on the interpretation of the closeness relation. We
give a necessary and sufficient condition for the closeness relation to
be such as to ensure good behavior. Lewis does in effect assume this
condition to hold, but it is an unreasonable assumption. However, we
can modify Lewis’s conditional to behave well with respect to our finite
conjunctions and disjunctions without making any such unreasonable

assumption on the closeness relation.

6. PROOFS

It suffices to prove all our Theorems in the special case where the
set of propositions is the power set 2% of W and pTw if and only if
w € p. To see this, given a frame F = (W, P, T, <), define the frame
F* = (W,2%,5,<) where p 3 w if and only w € p, and given this
frame let AS =S, p&q=pngq, pVqg=pUgqg, ~p=W\pand similarly
for infinite cases. Now observe that every single numbered statement

in each of our Theorems holds for F if and only if it holds for F*—this
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is a simple exercise for the reader. Consequently, we need only prove
the results in the case of F*, and so below we always assume that
our propositions are subsets of W. I will generally use the “logical”
symbols &, V and ~ in “propositional contexts” and N, U and \ in “set
theoretic contexts”.

Say that a world o “witnesses po— g at w” provided that a € pNgq
and every world 8 € p\q satisfies a <,, § (the term “to witness” is
Steven Kuhn’s). Then, po— ¢ at w if and only if either p is the empty

set or there is a world a witnessing to p o— ¢ at w.

Proof of Theorem 1. First we prove that (iii) implies (i) and (ii). To
do this, assume (iii) and to show (i) suppose first we have po— ¢; at w
and po— ¢p at w.

Now if p is empty, it trivially follows that po— (g1 N& ¢2) at w. Thus,
suppose p is non-empty, and let «; witness p o— ¢; at w for i = 1, 2.
If oy also witnesses p o— (q1 & ¢2) at w, we are done. So suppose that
a; does not witness p o— (g1 & g2). There are two cases now. Either
(A) oy € gz or (B) a; € o but there is a 8 € p\(g1 N ¢2) such that we
do not have a; <, 5.

Case (A): Then, since as witnesses p o— ¢o at w, it follows that
Qs <y 1. I now claim that it follows that as witnesses p o— (g1 & ¢2)
at w. To see this, choose any 8 € p\(q1 Nqz2). If B € p\qi, then
a1 <4 B since o witnesses po— ¢ at w, and 80 ay <, [ as ag <y Q7.

If B € p\go, then also as <, (3 since ay witnesses po— g at w. Hence,
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in either case ay <, [ and so indeed as witnesses po— (q; & ¢2) at w,
and we are done.

Case (B): If 8 € p\qi, then ay <,, 8 since a; witnesses po— ¢; at w.
Thus, in fact, we must have § € p\gs. Since oo witnesses p o— ¢y at
w, it follows that as <, . Moreover, either 5 <, a; or 8 and «a; are
w-incommensurable.

I now claim that as witnesses p o— (¢; & ¢2) at w. For suppose we
have a v € p\(q1 N q2). Then v € p\g2 or v € p\q; or both. If y € p\g;
then «; <, 7 since «a; witnesses p o— ¢;. Thus, if v € p\g2 we have
as <4 7y and we are done.

Suppose then v € p\q;. Then, we have a; <, 7. Now, either
B <u a1 or B and a; are w-incommensurable. If 3 <, a; then since
g <, B it follows that as <., v and we are done. If, on the other hand,
b and «a; are w-incommensurable, it follows that we have ay <,, 3, 0
and oy incommensurable, and «; <, 7, and from (iii) it follows that
as <4 7, and we are once again done.

Thus, in both cases (A) and (B) we have po— (¢ & ¢2) at w.

Thus, (iii) implies (i). Now we will show that (iii) implies (ii). Sup-
pose p; o— ¢ at w is witnessed by «; for ¢ = 1,2. If a; witnesses
(p1 V p2) o= ¢ at w, we are done, so suppose that a; does not witness
(p1 V p2) o— q at w. Thus, there exists a € (p; U pz)\¢ such that
a1 <o B. Since ap witnesses p; o— ¢ at w, this is only possible if
B € p2\gq. In that case, we have ay <,, [ since ay witnesses py o— ¢ at

w.
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I now claim that ao witnesses (p; V p2) 0— ¢ at w. For suppose that
v € (p1 Ups)\q. We must show that as <, 7. If v € po\q this follows
immediately from the fact that as witnesses py 0— ¢ at w. So suppose
v € p1\q. Then, a; <, 7. Now we have a; £, . Thus, either ay
and [ are w-incommensurable or 8 <, a;. In the latter case we have
Qg <y B <u a1 <y v and we are done. In the former case, we have
as <4 B, B and a; are w-incommensurable, and a; <,, v, and it follows
from (iii) that as <, . Hence, indeed, we have (p; V p) o— ¢ at w.

We now need to show that ~ (iii) implies ~ (i) and ~ (ii). Now, if
(iil) fails then there is a quintuple of worlds «, 3, 7, § and w such that
a <, B and v <, 6 and [ and 7 are w-incommensurable, while we do
not have a0 <, 9.

Now, let p = {a,,7,0}. Let ¢1 = {a,B,7}. Let ¢2 = {a,7,d}.
Observe that po— ¢; at w is witnessed by ~. For if w' is any member
of p\qi, then w' = § and indeed vy <, 6. Similarly, po— ¢» at w is
witnessed by « since the only member of p\g, is § and a <,, 8.

I now claim that we do not have po— (¢; & ¢2) at w. For ¢ Ngs =
{a,~}. Thus, the only possible witnesses to po—(g;Ngz) at w are « and
7. But a does not witness po— (g1 Ngz) at w because ¢ € p\(¢1Ngz) and
a £ 0. Neither does y witness po—(g1Ng2) at w because 5 € p\(¢1Ng2)
and v £, B since v and § are w-incommensurable. Hence, indeed, (i)
fails.

To see that (ii) also fails, let p; = ¢1 = {«, 5,7} and let py = ¢o =

{a,7,0}. Set ¢ = {a,7}. Observe that p; o— ¢ at w is witnessed by
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a since p1\q = {8} and a <, B. Also observe that p, o— ¢ at w is
witnessed by v since po\q = {0} and v <,, 6.

On the other hand, we do not have (p; V ps) o— ¢ at w. For the

only possible witnesses would be the members of ¢, namely « and ~.

But as before, a does not witness (p; V pz) 0— ¢ at w since a £, 0

and ¢ € (p1 Upz)\q, and v does not witness it either since vy £, 8 and

B € (p1Up2)\g. O

Proof of Theorem 2. First, let us prove (i). Suppose p is non-empty.
Then suppose p o— ¢; at w is witnessed by «; for i« = 1,2. To obtain
a contradiction suppose p o— ~(q; & ¢2) is witnessed by 3. Then, 5 €
p\(q1 N g2). Without loss of generality, suppose 8 € p\g;. Then, since
o witnesses p o— ¢; at w, we have a; <, . This would contradict
the claim that § witnesses po— ~(q1 & ¢2) at w, if we had a1 € ¢ N o,
soa; ¢ g1 Nge. As a; € qq, it follows that a; ¢ go. Thus, since as
witnesses p o— ¢, at w, we have ay <, a3 <, [. Since [ witnesses
po— ~(q1 & ¢2) at w, it follows as before that as ¢ ¢; N g2, and since
Qg € ¢, it follows that ay ¢ ¢;. But then since oy witnesses po— ¢ at
w, it follows that oy <., ag, which contradicts the claim that as <, a;.
Hence, a contradiction indeed ensues.

Suppose now that p; Ups is non-empty and p; 0— ¢ at w is witnessed
by «; for i = 1,2. To obtain a contradiction suppose [ witnesses
(p1Vpy)o—~qat w. Then, 8 € (pyUps)\q. Without loss of generality,
suppose [ € p;\g. Then, a; <, 3 since a; witnesses p; o ¢ at w. But

since 8 witnesses (p; V ps) o— q at w, it follows that a; € (p; Ups) Ng.



LEWISIAN SEMANTICS 28

However, if a; witnesses py, then a; € p;Ng. Thus, oy € py. It follows
then, as in the conjunction case, that as <, a; <, B. As before, by
the witnessing condition on f3, it follows that ay ¢ (p1 U p2) N ¢, and
S0 as ¢ p1. By the witnessing condition on a; we then have a; <, as,

which contradicts the earlier claim that as <, ay. O

If w is fixed by the context, we shall write p* = {f € p: 5 <, a},
where 8 <,, « if and only if either § <, a or § = a. Observe that
po—* ¢ at w holds if and only if for every a € p\q there is a 3 € p such
that B <, o and p® C ¢q. Note also that if o witnesses p o— ¢q at w,

then p* C q.

Proof of Theorem 3. If po— q at w and p is empty, then (1) is satisfied
trivially, and so po—* q. Suppose p is non-empty. Let 5 witness po— q
at w. Choose any a € p\g. Since [ witnesses p o— ¢ at w, it follows
that 8 <, a and p? C q. Thus, (1) is satisfied, and so p o—* q.
Suppose po—* g at w and po—* ~ ¢ at w. To obtain a contradiction,
suppose p is non-empty. Choose a € p. Then either a € g or o € W'\qg.
Without loss of generality suppose a € W\ q (else replace ¢ with ~ q).
Then, a € p\q. Since po—* ¢ at w, there is a 8 € p such that 5 <, «
and p® C ¢. Since p o—=* ~q at w, there is then a v € p such that
v <w B and p* C W\q. Since v <,, 3, we have v € p®, however, and
so v € q, which contradicts the facts that p” C W\q and € p. Thus,
if p is non-empty, we cannot have both p o—* ¢ at w and po—* ~¢q at

w.
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Finally, we need to prove (1) and (2) for o—*. Suppose that po—* ¢
at w and po—* ¢ at w.

Fix any a € p\(q1 N ¢2). To show that po—* (¢; & ¢2) at w, we need
to show that there is a world @ € p such that 6 <,, o and p? C ¢; N qo.
To do so, proceed as follows. We have o € p\g; or a € p\g (or both).
Without loss of generality, suppose @ € p\g;. Since po—*¢q; at w, there
is a 8 € p such that p® C ¢ and 8 <, a.

Suppose first we have p® C go. Then, p® C ¢ N go, and we are done
upon letting 6 = (.

Next, suppose that p® is not a subset of g,. Let v € p be such that
v <w B and v ¢ ¢o. Since p 0—* go at w, there is a 6 € p such that
§ <w v and p’° C ¢q. Then § <, B and so p° C p? C ¢. Thus,
p° C q1 N qo, and so we are done if we let § = 4.

It remains to show (2) for c—*. Suppose p; o—* ¢ at w and py 0—* ¢
at w. Fix a € (p; Up2)\g. To show that (p; V p2) o=* g, we need to
show that there is a § € p; U py such that § <, a and (p; Ups)? C q.
To do this, suppose without loss of generality that a € p;.

Then, since p; o—* ¢ at w, there is a 8 € p; such that § <, a and
pf Cyq. If pg C q, then we are done upon letting # = . Thus, suppose
that pg is not a subset of ¢q. Let v € pg\q. Since ps o—* ¢, there is a
§ € py such that § <, v and p§ C ¢. Since v <, f3, it follows that
§ <w B. Thus, (p;Ups)® C pPUpd C qUq = ¢. Letting 6 = § completes

the proof. O
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