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Abstract. Popper functions allow one to take conditional probabilities
as primitive instead of deriving them from unconditional probabilities
via the ratio formula P (A|B) = P (A∩B)/P (B). A major advantage of
this approach is it allows one to condition on events of zero probability.
I will show that under plausible symmetry conditions, Popper functions
often fail to do what they were supposed to do. For instance, suppose we
want to define the Popper function for an isometrically invariant case in
two dimensions and hence require the Popper function to be rotationally
invariant and defined on pairs of sets from some algebra that contains at
least all countable subsets. Then it turns out that the Popper function
trivializes for all finite sets: P (A|B) = 1 for all A (including A = ∅)
if B is finite. Likewise, Popper functions invariant under all sequence
reflections can’t be defined in a way that models a bidirectionally infinite
sequence of independent coin tosses.

1. A problem for Popper functions

Classical probability theory defines conditional probabilities in terms of
unconditional probabilities via the ratio formula: P (A|B) = P (A∩B)/P (B).
There are at least three kinds of motivations not to do this (cf. [6, 7]). One is
metaphysical: it may seem plausible to think that conditional probabilities
are actually more fundamental than the unconditional ones. And two are
more technical. One is that intuitively the conditional probability P (A|B)
can make sense even when P (B) is undefined, for instance because B is a
nonmeasurable set or B represents an event where it doesn’t seem to make
sense to assign a precise numerical probability, such as maybe the event of
the cosmos exhibiting lawlike regularities. The second is that the conditional
probability P (A|B) often makes sense even though P (B) = 0, while the ratio
formula then yields 0/0. In both of these technical cases, we want to be able
to say things like P (∅|B) = 0 and P (B|B) = 1, as well as to be able to
say or deny1 things like P ({1/2}|{1/3, 1/2}) = 1/2 in the case of a uniform
distribution on the interval [0, 1] = {x : 0 ≤ x ≤ 1}.

Popper functions are primitive conditional probabilities designed to ad-
dress all three problems. I shall give some negative formal results show-
ing that Popper functions fail to satisfy natural symmetry or invariance
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1The arguments in [13] suggest that sometimes denial is the right move.
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conditions. The mathematics here mostly comes from the paradoxical de-
composition results behind the Hausdorff and Banach-Tarski paradoxes,
but unlike the Hausdorff and Banach-Tarski theorems, our results do not
need the Axiom of Choice.2 For simplicity of formalism, we will work with
probabilities and Popper functions in the context of probabilities for sets
rather than sentences. A Popper function P can be defined as a function
that assigns a real number P (A|B) to every pair A and B of members of
a field F of subsets of some set Ω (fields are non-empty, and closed un-
der complements and finite unions), satisfying the following axioms, where
Ac = Ω−A = {y ∈ Ω : y /∈ A}:

(1) 0 ≤ P (A|B) ≤ P (B|B) = 1
(2) if P (Bc|B) 6= 1, then P (−|B) is a finitely additive probability func-

tion
(3) P (A ∩B|C) = P (A|C)P (B|A ∩ C)
(4) if P (A|B) = P (B|A) = 1, then P (C|A) = P (C|B). [19]

Following [19], we say that B is abnormal provided that P (Bc|B) = 1.
The crucial things to observe here is that (a) when B is normal, P (−|B)
is a finitely additive probability and by (3) we have the product formula
(b) P (E|F )P (F |G) = P (E|G) whenever E ⊆ F ⊆ G (just let B = E,
A = F and C = G). As [19] notes, beyond the condition that P (−|B) be
a finitely additive probability for normal B and the product formula, the
rest is just detail for handling abnormal sets. We could reaxiomatize the
above by distinguishing a non-empty set G ⊆ F of normal subsets, with the
condition that P (A|B) is defined for all A ∈ F but only for B ∈ G, and then
simply requiring the finitely-additive probability and product conditions, as
well as specifying that if P (A|B) > 0 for a normal B, then A is normal as
well. [19, p. 420].

The following are some standard facts about abnormal sets.

Proposition 1. The following conditions on a set B in F are equivalent
given a Popper function P :

(i) P (Bc|B) = 1
(ii) P (∅|B) = 1
(iii) P (A|B) = 1 for all A ∈ F .

Moreover, if B and C are in F , with B abnormal and C ⊆ B, then C is
abnormal. And if B and C in F are both abnormal, so is B ∪ C.

The straightforward proof is given in Section 2 for completeness.

2That said, the methods of [16, Section 4] can be used to show that if there is a Popper
function on some set of cardinality equal to the continuum for which all countable subsets
are normal (in a sense that will be defined shortly), then that yields a weak version of the
Axiom of Choice that is nonetheless strong enough to generate the Hausdorff and Banach-
Tarski paradoxes. The proof in that paper is given for the case of a Popper function where
all subsets are normal, but works just as well if only the countable ones are assumed to
be normal.
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We see that if B is abnormal, P (−|B) is a trivial constant function.
Popper functions only solve our two technical problems about conditional
probability if the sets we want to be able to condition on are normal. For
instance, a Popper function where all finite sets are abnormal offers no help
with conditioning on finite sets.

Now, nonmeasurability on the real line R arises for Lebesgue measure from
the requirement that the measure be invariant under translations: m(A) =
m(τA) for any translation τ . Similarly, abnormalcy will be seen to arise
for Popper functions in dimensions two and higher from similar symmetry
conditions. Suppose that Ω is a subset of some space X and that G is a group
of bijective transformations of X onto X. In the cases we will consider, X
will be Rn and G will be a group of isometries. We then say that a Popper
function on F , where F is a field of subsets of Ω, is weakly G-invariant
provided that

(5) if g ∈ G and A ∈ F is such that gA ⊆ Ω, then gA ∈ F
(6) if g ∈ G and A,B, gA, gB are in F , then P (gA|gB) = P (A|B),

where gA = {ga : a ∈ A}. Observe that then if B is abnormal and gB ∈ F ,
we have 1 = P (∅|B) = P (g∅|gB) = P (∅|gB) and so gB is abnormal as
well. Note too that our invariance condition does not require that gΩ ⊆ Ω.
This allows us, for instance, to talk about translation and rotation invariance
for subsets of, say, the cube.

For strong invariance, we add the condition:

(7) if g ∈ G and A,B, gA are in F with A ∪ gA ⊆ B, then P (gA|B) =
P (A|B).

It is shown in [17, Theorem 1] that weak invariance does not imply strong
invariance, even if Ω is all of X and there are no abnormal sets in F .3

An isometry in a metric space is a transformation ρ that preserves dis-
tances: d(ρx, ρy) = d(x, y). In n-dimensional Euclidean space Rn, isome-
tries are combinations of translations, rotations and reflections. Isometric
invariance is a very natural condition to put on probabilities for outcomes
of certain random processes taking values in a subset of Rn. But it turns
out that isometrically invariant Popper functions in dimensions 2 and higher
have many abnormal sets, so many that too many of the technical problems
that Popper functions were supposed to solve cannot be solved by them.

Winfried Just [9] has shown, by an elaborate explicit construction with-
out the use of the Axiom of Choice, that there is a bounded (i.e., contained

3In [1, p. 5] there is a claimed proof that weak invariance is equivalent to strong
invariance in this case, but the putative proof is incomplete. Note also that while the
Axiom of Choice is assumed at the outset of [17], it is not needed for the proof that not-
(b) implies not-(a) in Theorem 1 of that paper, and that implication applied in the case
where G = Ω = Z (acting on itself by addition) will generate a weakly but not strongly
invariant Popper function on an algebra F of subsets of Z with all members of F normal,
contrary to [1].
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within a finite disc) countably infinite subset J of R2 such that J can be de-
composed into four pieces which can, in turn, be rigidly moved to construct
two copies of J . More precisely, J can be partitioned into disjoint subsets
J1, J2, J3, J4, and there are rigid motions g1, g2, g3, g4 such that g1J1 = J
and g2J2, g3J2, g4J4 is also a disjoint partition of J . (Rigid motions are
combinations of translations and rotations, without reflection.) By scaling
and translation, we may assume that J ⊆ [0, 1]2. Just’s result improves on
the Sierpiński-Mazurkiewicz paradox [20, pp. 9–10] which gives a simpler
paradoxical decomposition in the same spirit, but of an unbounded set. A
simple exposition of the Sierpiński-Mazurkiewicz paradox is given in [18].

It follows that any strongly isometrically invariant Popper function P on
a field F of subsets of [0, 1]2 such that F contains all countable subsets is
such that P makes J abnormal. For if J were normal, then P (−|J) would
define a G-invariant finitely-additive probability function on all subsets of
J (i.e., P (gA|J) = P (A|J) if A, gA ⊆ J). But that’s impossible. For we
would then have:

1 = P (J |J)

= P (J1|J) + P (J2|J) + P (J3|J) + P (J4|J)

= P (g1J1|J) + P (g2J2|J) + P (g3J3|J) + P (g4J4|J)

= P (J |J) + P (g2J2 ∪ g3J3 ∪ g4J4|J)

= P (J |J) + P (J |J) = 2.

Moreover, since any subset of an abnormal set is abnormal, there will be an
abnormal singleton, and by G-invariance, every singleton will be abnormal.
And since finite unions of abnormal sets are abnormal, it follows that every
finite subset of [0, 1]2 will be abnormal.

However, strong isometric invariance is somewhat less intuitive than weak
isometric invariance, so the above result is perhaps not so damaging to the
Popper function project. But it turns out that with some more work, a
similar result can be proved for weak isometric invariance in dimensions two
and higher.

Theorem 1. Let Ω be any subset of Rn, n ≥ 2, that contains a solid disc
or ball of non-zero radius. Suppose P is an isometrically invariant Popper
function on Ω such that F contains all countable subsets. Then there is a
countably infinite abnormal J ⊂ Ω, and hence every finite subset of Ω is
abnormal.

The claim about finite subsets follows from the existence of the countably
infinite abnormal J as before. Moreover, we only need to prove the theorem
for n = 2, since if n > 2, we can just apply the n = 2 case to the Popper
function restricted to pairs of subsets of a plane passing through the center of
the solid ball in Ω. Note that the assumption that all countable subsets are
in F parallels the fact that ordinary measures like the Lebesgue or Hausdorff
measures are defined for all Borel sets, and all countable sets are Borel sets.
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The proof will be given in Section 2. It is not known if isometries can be
replaced with rigid motions in Theorem 1.4

But in dimensions 3 and higher, it turns out that all we need to generate
abnormality is invariance under rotations about the origin. Let Br = {z :
|z| < r} be the interior of the ball of radius r centered on the origin and let
Sr = {z : |z| = r} be its surface.

Theorem 2. Let Ω ⊆ Rn, n ≥ 3, contain Sr for some r > 0. Suppose P is
a Popper function on Ω invariant under rotations about the origin and such
that F contains all countable subsets. Then there is a countably infinite
abnormal Jr ⊆ Sr. Hence if Ω = BR for some R > 0, then every finite
subset of Ω not containing the origin is abnormal.

Again, the last sentence follows trivially from what came before. For if
Jr ⊆ Sr is abnormal for an r strictly between 0 and R, so will some singleton
in Sr be, and hence so will every singleton in Sr be (they are all rotationally
equivalent), and hence so will be every finite subset of BR not containing
the origin. The proof is also in Section 2 and uses one of the constructions
involved in the Banach-Tarski paradox.

Note that Theorem 2 is false for R2, at least given the Axiom of Choice,
since [12] shows that then there is a rotationally-invariant Popper function
on all subsets of any circle (the unit interval with translation modulo 1 that
they work with is equivalent to the circle) with only the empty set abnormal
(in our terminology).

The situations in the theorems include paradigmatic cases where we would
like to have well-defined Popper functions. Imagine, for instance, that we
have no information about where a dart with a perfectly defined tip hit
a circular planar target. It is reasonable to take the distribution of the
dart location over the target to be uniform and the corresponding Popper
function P to be weakly invariant with respect to isometries. Let x and y be
any two points on the target. We will want to be able to say that given that
one hit either x or y, the conditional probability of having x is 1/2, or at
least less than one. But each finite subset will be abnormal by Theorem 1,
so absurdly P ({x}|{x, y}) = P ({y}|{x, y}) = P (∅|{x, y}) = 1.

Or consider a particle released at at the center of a sphere, and engaging
in Brownian motion until it hits the surface of the sphere. Let X be the
point where the particle impacts the surface of the sphere. We expect the
probabilities, conditional and unconditional, concerning X to be symmetric

4The difference may seem small, namely whether one also requires invariance under
reflections—and, in fact, under any single fixed reflection, since all reflections in R2 can
be generated by a single fixed reflection combined with appropriate rigid motions. But
nonetheless the difference may be significant. The proof of Theorem 1 uses a trick similar
to that used in [15] to show that there is no isometrically-invariant preordering on the
subsets of the circle that extends strict inclusion. But [15] also showed that there is such a
preordering when isometries are replaced with rigid motions. So we know that sometimes
there is a significant difference between isometries and rigid motions in respect of the
generation of invariant functions or relations.
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under rotations about the center. We want to be able to say things like:
given that the particle impacts either on the North or the South Pole, the
probability that it impacts on the North Pole is 1/2. But we can’t say
this, given that all countable, and hence all finite, subsets of the sphere are
abnormal by Theorem 2, and hence all probabilities conditional on them are
1.

In [6] it was argued that the way to solve the problems with the ratio
formula in the case of null probability events such as a dart’s hitting a par-
ticular point is to move to primitive conditional probabilities of the Popper
variety. This requires singletons and hence all finite subsets to be normal
in our terminology, and thus in situations exhibiting appropriate isometric
symmetries it will not work.

More recently, [5] has convincingly argued that assigning hyperreal in-
finitesimal probabilities to null probability events posits too fine-grained a
probabilistic structure—after all, we would need to specify the particular
hyperreal system to be used. Instead, [5] seems to suggest that Popper
functions have a better level of granularity. Here, one can think of classi-
cal probability assignments as having the lowest level of granularity: they
lump all measure zero sets, including all countable subsets of a Euclidean
space in isometrically invariant cases, together. Popper functions allow for
a finer level of granularity. For instance, when two subsets A and B have
measure zero, as long as both sets are normal, we can numerically compare
their sizes, for instance by comparing P (A|A ∪ B) with P (B|A ∪ B) as in
[2] or even more finely by comparing P (A − B|(A − B) ∪ (B − A)) with
P (A − B|(A − B) ∪ (B − A)) as in [4]. Hyperreal probability assignments,
on the other hand, allow for even finer-grained comparisons, and it is these
comparisons that [5] has argued to posit excessive probabilistic structure.
But our results show that Popper functions already posit too much struc-
ture in two- and three-dimensional isometrically invariant cases, since the
extra structure they posit in the case of countable subsets must fail to have
the requisite invariance (just as the hyperreal probabilities have too much
structure already in one-dimensional isometrically invariant cases [14]).

An optimistic thought would be that much as we have learned to think
of some sets as non-measurable, we should also accept some sets as “non-
conditioning”—sets like Just’s paradoxical set J . But if we want to be able
to condition on finite sets, these non-conditioning sets cannot simply be
Popper-style abnormal sets, since every subset of an abnormal set is abnor-
mal, while we want finite subsets of non-conditioning sets to be something
we can condition on.

Perhaps we should thus modify the definition of Popper functions so that
instead of P (A|B) being defined for all A and B in a single field F , there
a field F and a set or field G such that P (A|B) is defined whenever A ∈ F
and B ∈ G. But it is not clear, however, what requirements should be put
on G that will not be ad hoc. This is left for further investigation.
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We should note that the above problems come from requiring rotational
invariance. For we have:

Theorem 3. Given the Axiom of Choice, there is a strongly translation-
and coordinate-reflection-invariant Popper function defined on all pairs of
subsets of Rn, n ≥ 1, with every non-empty subset normal.

Here, a coordinate-reflection is a function f : Rn → Rn of the form
f(x1, . . . , xn) = (α1x1, . . . , αnxn) for a sequence of αi ∈ {−1, 1}. The proof
will be a simple application of a result of [1] and will given in Section 2.
Note that by Theorems 1 and 2, we cannot require invariance under all
reflections in Theorem 3, since compositions of reflections can be used to
generate rotations.

Given that the problem comes from rotational invariance, instead of tak-
ing away the lesson that Popper functions are a flawed tool, one might
conclude that space cannot really be rotationally isotropic or that there
cannot be genuinely rotationally isotropic random processes (cf. [8]). The
naturalness of Brownian motion makes this an unattractive way out.

Moreover, we have one final problem for Popper functions that does not
depend on rotation in higher dimensions but merely one-dimensional reflec-
tion. This problem is a variant on Williamson’s elegant argument [21] that
the probability of an infinite sequence of heads cannot be given by an infini-
tesimal: Let Hn be the event that the independent fair coin tosses numbered
n, n + 1, n + 2, . . . all result in heads, and let Xn be the result of the nth
toss. Then by independence P (H1) = P (X1 = H)P (H2) = (1/2)P (H2).
But P (H1) = P (H2), since both are the probability of an equivalent5 infi-
nite sequence of fair coin tosses and so P (H1) = (1/2)P (H1), which implies
P (H1) = 0.

Given the correspondence between Popper functions and hyperreal prob-
abilities [10, 11], we have reason to expect a corresponding negative result
for Popper functions. Here is one such result, though for technical reasons in
the context of a bidirectionally infinite sequence. A bidirectionally infinite
sequence of coin tosses can be represented as a function from the integers Z
to {H,T}. Thus, let Ω = {H,T}Z be the set of such functions. Let Hn be
the event of getting heads on tosses n, n+ 1, n+ 2, ..., i.e.,

Hn = {ω ∈ Ω : ∀k(k ≥ n→ ω(k) = H)}.

Let Xn be the random variable giving result of the nth toss, i.e., Xn(ω) =
ω(n). Let G be the group of transformations of Ω generated by (i.e., write-
able as a finite product of) sequence reflections. A sequence reflection is a
transformation Rx, for x ∈ Z/2 (the integers and half-integers), such that
Rx(ω)(n) = ω(2x−n). Thus, Rx(ω)(n) reflects the sequence about the point

5Though see [8] for an interesting critique of this equivalence condition, and in general
of symmetry-based reasoning. Nonetheless, abandoning symmetry in this way appears a
very high cost.
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x. Observe that every sequence translation can be written as the product
of two sequence reflections.

A natural symmetry condition, then, on our Popper function on Ω is
weak invariance under sequence reflections or, equivalently, under G (and
hence automatically also under translations). For instance, the probability
of getting heads on tosses n, n+ 1, n+ 2, . . . conditionally on some event E
is the same as the probability of getting heads on tosses n, n− 1, n− 2, . . .
conditionally on RnE. A second natural condition is that P (H1|H2) =
P (X1 = H|H2) = 1/2 since the first toss is independent of H2.

Theorem 4. If G is the transformations of Ω = {H,T}Z generated by
reflections, then there is no G-invariant field F of subsets of Ω containing
all the events Hn, n ∈ Z, and weakly G-invariant Popper function P on F
such that P (H1|H2) = 1/2.

I do not know if there is a version of this result for unidirectionally infinite
sequences.

2. Proofs

Proof of Proposition 1. Trivially, (iii) implies (ii). If (ii) is true then P (−|B)
is not a probability function, and so by (2) we must have (i). So it remains
to see that (i) implies (iii). First, observe that 1 = P (∅|∅) = P (A∩Ac|∅) =
P (A|∅)P (Ac|A∩∅) by (1) and (3). But the only way two numbers between
0 and 1 have a product equal to 1 is if both are 1, so in particular P (A|∅) = 1
for all A. Supposing P (Bc|B) = 1, by (3) we have

P (∅|B) = P (Bc ∩B|B) = P (Bc|B)P (B|Bc ∩B) = P (B|∅) = 1.

Thus, by (4), P (A|B) = P (A|∅) = 1 for all A.
Next suppose B is abnormal and for reductio suppose C ∈ F is a subset

of B and is normal. Then P (B|C) ≥ P (C|C) = 1 by (1) and (2). But by
(iii) we have P (C|B) = 1, and so by (4) we have P (∅|C) = P (∅|B) = 1,
which contradicts the assumption of normalcy.

Finally, suppose B and C are abnormal. Then by (3) we have

P (B ∩ C|B ∪ C) = P (B|B ∪ C)P (C|B ∩ (B ∪ C)) = P (B|B ∪ C)P (C|B).

But P (C|B) = 1 by abnormalcy. Thus, P (B ∩ C|B ∪ C) = P (B|B ∪ C).
For a reductio, suppose B ∪ C is normal. Then by (2) we have

P (B|B ∪ C) = P ((B ∩ C) ∪ (B − C)|B ∪ C)

= P (B ∩ C|B ∪ C) + P (B − C|B ∪ C)

and so P (B − C|B ∪ C) = 0. Now,

1 = P (B ∪ C|B ∪ C) = P (C ∪ (B − C)|B ∪ C)

= P (C|B ∪ C) + P (B − C|B ∪ C) = P (C|B ∪ C).

But of course P (B ∪C|C) = 1 by abnormalcy of C. It follows from (4) that
B ∪ C is abnormal, which contradicts the assumption that it’s normal. �
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Both Theorems 1 and 2 immediately generalize to higher dimensions as
soon as they are proved for some dimension n. That is because a Popper
function on a higher-dimensional space induces Popper functions on its sub-
sets and hence on lower-dimensional spaces. Thus, we only need to prove
the theorems in the cases where n = 2 and n = 3, respectively.

Now, for a Popper function P and A,B ∈ F , define cP (A,B) = P (A|A∪
B)/P (B|A ∪ B), where x/0 = ∞ for x > 0. Note that cP (A,B) is well-
defined, since if A ∪ B is abnormal, both its numerator and denominator
are 1, and if A ∪ B is normal, then by finite additivity the numerator and
denominator cannot both be zero. Also, cP (B,B) = 1 for all B. One
can think of cP as a kind of relative probability (cf. [3]) or local exchange
rate [1, 2]. The following summarizes some easy facts and will be useful for
the proof of Theorem 1.

Lemma 1. Let P be a Popper function. Then:

(i) If B is normal, then cP (−, B) is finitely additive.
(ii) For all A,B,C ∈ F we have cP (A,B)cP (B,C) = cP (A,C) if the

left-hand-side is well defined (i.e., is neither 0 · ∞ nor ∞ · 0).
(iii) If P is weakly G-invariant, then for any g ∈ G and A,B ∈ F such

that gA, gB ∈ F , we have cP (A,B) = cP (gA, gB).

Proof. Claim (i) is obvious.
Now let T = A ∪ B ∪ C. Suppose first that P (A ∪ B|T ) > 0 and P (B ∪

C|T ) > 0. Then if X ⊆ A ∪B, we have

P (X|T ) = P ((A ∪B) ∩X|T ) = P (A ∪B|T )P (X|(A ∪B) ∩ T )

= P (A ∪B|T )P (X|A ∪B)

by (3), and so P (X|A∪B) = P (X|T )/P (A∪B|T ). Similarly, P (Y |B∪C) =
P (Y |T )/P (B ∪C|T ) for any Y ⊆ B ∪C. Thus if cP (A,B)cP (B,C) is well-
defined:

cP (A,B)cP (B,C) =
P (A|T )/P (A ∪B|T )

P (B|T )/P (A ∪B|T )
· P (B|T )/P (B ∪ C|T )

P (C|T )/P (B ∪ C|T )

=
P (A|T )

P (C|T )
.

If P (A∪C|T ) > 0, then P (X|A∪C) = P (X|T )/P (A∪C|T ) for X ⊆ A∪C
as before, and the right hand side of the displayed equation equals cP (A,C)
as desired.

If P (A∪C|T ) = 0, then T is normal and so P (A|T ) = P (C|T ) = 0 while
P (B|T ) = 1 as T = A ∪ B ∪ C. Thus, cP (A,B) = P (A|T )/P (B|T ) = 0
and cP (B,C) = P (B|T )/P (C|T ) =∞ and so cP (A,B)cP (B,C) is not well-
defined, and so we trivially have (ii).

Next suppose P (A ∪ B|T ) = 0. Again, it follows that T is normal so
P (A|T ) = P (B|T ) = 0 and P (C|T ) = 1. Thus, P (B ∪ C|T ) > 0 and so
cP (B,C) = P (B|T )/P (C|T ) as before and thus cP (B,C) = 0. In the same
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way P (A ∪ C|T ) > 0 and so cP (A,C) = 0. Thus, cP (A,B)cP (B,C) =
cP (A,C) if the left hand side is well-defined.

Finally, suppose P (B ∪ C|T ) = 0. Then P (B|T ) = P (C|T ) = 0 and
P (A|T ) = 1. We thus have P (A ∪ B|T ) > 0 and as before cP (A,B) =
P (A|T )/P (B|T ) = ∞. Likewise P (A ∪ C|T ) > 0 and so cP (A,C) =
P (A|T )/P (C|T ) = ∞. Thus, again cP (A,B)cP (B,C) = cP (A,C) if the
left hand side is well-defined, and the proof of (ii) is complete.

Finally if P is weakly G-invariant, g is in G and A and B are such that
A,B, gA, gB are in F , then cP (gA, gB) = P (gA|gA∪gB)/P (gB|gA∪gB) =
P (A|A ∪B)/P (B|A ∪B) = cP (A,B), and hence (iii) holds. �

Let e be the identity transformation. Suppose Ω ⊆ R2.

Lemma 2. Suppose P is a weakly G-invariant Popper function on all sub-
sets of Ω. Suppose that g ∈ G is such that g2 = e. Suppose A,B, gA are
subsets of Ω. Then cP (A|B) = cP (gA|B).

Proof. We have cP (gA|A) = cP (g2A|gA) = c(A|gA) by Lemma 1(iii). Thus,
cP (gA|A)cP (A|gA) = (cP (gA|A))2. Thus, the product on the left-hand-
side is defined, and so hence must equal cP (gA|gA) = 1 by Lemma 1(ii).
Thus, cP (gA|A) = 1. But then cP (gA|A)cP (A|B) = cP (gA|B). Thus,
cP (A|B) = cP (gA|B) by a final application of Lemma 1(ii). �

Now observe that every isometry on R2 can be written as a composition
of reflections. For, every isometry is a composition of reflections, transla-
tions and rotations. And every translation or rotation is a composition of
reflections: a translation by a vector v is the result of first reflecting in any
line L at right angles to v and then reflecting in the line v + L, while a
rotation ρx,θ by an angle θ about a point x is the result of first reflecting
about any line L through x and then reflecting in ρx,θ/2L.

Given a sequence of isometries g1, g2, . . . , gn of Rn, let R(r; g1, g2, . . . , gn)
be the infimum of those values of R such that every point of B̄r ∪ g1B̄r ∪
g2g1B̄1 ∪ · · · ∪ (gn · · · g2g1B̄r) is contained in B̄R, where B̄r = {z : |z| ≤ r}.
Since isometries map bounded sets to bounded sets, R(r; g1, g2, . . . , gn) <∞
if r <∞.

By the construction of [9], let J be a countably infinite subset of B̄1 such
that J can be partitioned into disjoint subsets J1, J2, J3, J4, and there are
rigid motions g1, g2, g3, g4 such that g1J1 = J and g2J2, g3J2, g4J4 is also a
disjoint partition of J . We can now write gi = gi,ni . . . gi,1 where the gi,j are
self-inverse. Let R = max1≤i≤4R(1; gi,1, . . . , gi,ni). Let G be all isometries
of R2.

Lemma 3. Let P be any weakly G-invariant Popper function on all subsets
of B̄R. Then J is abnormal.

Proof of Lemma 3. By repeated applications of Lemma 2 (we can put this
explicitly in terms of induction) and choice of R, we have cP (giJi, J) =
cP (gi,ngi,n−1 · · · gi,1Ji, J) = cP (gi,n−1 · · · gi,1Ji, J) = · · · = cP (Ji, J).
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If J is normal, then by Lemma 1(i):

1 = cP (J |J) = cP (J1|J) + cP (J2|J) + cP (J3|J) + cP (J4|J)

= cP (g1J1|J) + cP (g2J2|J) + cP (g3J3|J) + cP (g4J4|J)

= cP (J |J) + cP (g2J2 ∪ g3J3 ∪ g4J4|J) = 2cP (J |J),

which is absurd. Thus, J is abnormal. �

Proof of Theorem 1. We only need to prove the existence of the countably
infinite abnormal J , and only for n = 2. Suppose that Ω contains some ball
of non-zero radius. By translation and rescaling, we may assume that Ω
contains B̄R, and the existence of the desired countable abnormal set J now
follows from Lemma 3. �

Now, it is time to prove Theorem 2. Famously, the Banach-Tarski Theo-
rem states that, given the Axiom of Choice, a ball can be cut up into a finite
number of pieces which can be reassembled to form two balls of the same
size. Our proof will use completely standard methods employed in proving
to Banach-Tarski types of paradoxicality results [20], but since we are not
proving the full Banach-Tarski theorem, we can avoid the Axiom of Choice.

Proof of Theorem 2. Again, we only need to prove the existence of Jr and
only in the case n = 3. Rescaling, we may assume r = 1.

A standard route to proving the Banach-Tarski Theorem is first to show
that there is a countably infinite group H of rotations about the origin which
has a paradoxical decomposition into four disjoint pieces Hi, 1 ≤ i ≤ 4, such
that H is the union of the pieces and there are members σ and τ in H such
that H1∪σH2 = H and H3∪ τH4 = H. While the full proof of the Banach-
Tarski paradox uses the Axiom of Choice, the proof of the existence of H
follows immediately from [20, Thms. 2.1 and 4.5], which do not use Choice.

It immediately follows that there is no finitely additive probability func-
tion ν on all subsets of H that is left-invariant under H, i.e., such that
ν(hA) = ν(A) for h ∈ H and A ⊆ H. For then we would have
1 = ν(H) ≤ ν(H1) + ν(σH2) = ν(H1) + ν(H2) and 1 ≤ ν(H3) + ν(τH4) =
ν(H3) + ν(H4). But then we would have ν(H) = ν(H1 ∪H2 ∪H3 ∪H4) =
ν(H1) + ν(H2) + ν(H3) + ν(H4) ≥ 1 + 1, which is impossible.

Now, every member of H is a rotation about the origin. Thus every
member of H other than the identity e fixes some axis through the origin but
moves all other points around. There are uncountably many lines through
the origin in R3, and only countably many of them are axes of non-identity
rotations in H. Let z0 be a point on the unit sphere S1 that does not lie
on any of the axes of non-identity rotations in H. Then hz0 6= z0 for all
h ∈ H −{e}. Let J1 = {hz0 : h ∈ H} be the orbit of z0. This is a countably
infinite subset of S1.

For a reductio, suppose J1 is normal. Then P (−|J1) is a finitely additive
H-invariant probability function on all subsets of J1, since P (hA|J1) =
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P (hA|hJ1) = P (A|J1) for h ∈ H, as hJ1 = J1 and as P is weakly G-
invariant and H is a subgroup of G.

Now let ν(A) = P ({hz0 : h ∈ A}|J1). Let us check that ν is a finitely
additive left H-invariant probability function. We have ν(H) = P (J1|J1) =
1. If C and D are disjoint subsets of H, then {hz0 : h ∈ C} and {hz0 : h ∈
D} are disjoint subsets of J1. For suppose that z is a member of both, so
that z = cz0 = dz0 for c ∈ C and d ∈ D. Then c−1dz0 = z0, and by choice of
z0 it follows that c−1d = e, and hence c = d, contradicting the disjointness
of C and D. Thus, {hz0 : h ∈ C} and {hz0 : h ∈ D} are disjoint and so

ν(C ∪D) = P ({hz0 : h ∈ C ∪D}|J1)
= P ({hz0 : h ∈ C} ∪ {hz0 : h ∈ D}|J1)
= P ({hz0 : h ∈ C}|J1) + P ({hz0 : h ∈ D}|J1) = ν(C) + ν(D).

and so indeed ν is a finitely additive probability function. Moreover, for
h ∈ H,

ν(hA) = P ({h′z0 : h′ ∈ hA}|J) = P ({hh′z0 : h′ ∈ A}|J)

= P (h{h′z0 : h′ ∈ A}|J) = P ({h′z0 : h′ ∈ A}|J) = ν(A),

and so ν is left H-invariant. But we’ve already seen that there is no left
H-invariant finitely additive probability function on H. Thus, J1 cannot be
normal. �

It remains to prove Theorem 3. For any finite subset S of a group G,
let γS(n) be the number of elements in G that can be written in the form
g1g2 . . . gn, where each of the gi is either in S or is the inverse of a member
of S. Then G is exponentially bounded provided that limn→∞(γS(n))1/n = 1
for every finite S ⊆ G. Given two groups G and H, their direct product is
the set G×H with the operation (a, b)(c, d) = (ac, bd).

Lemma 4. If G and H are exponentially bounded, so is their direct product.

Proof. Let π1 and π2 be the projections of G×H onto G and H, respectively.
Let S ⊆ G × H be finite. Then it is easy to see that γS(n) ≤ γπ1[G]γπ2[G]

and so lim supn→∞(γS(n))1/n ≤ 1 by the exponential boundedness of G and

H. But γS(n) ≥ 1 for all n, so limn→∞(γS(n))1/n. �

Proof of Theorem 3. Let G be the group of isometries generated by the
translations and coordinate reflections. This is a direct product of n copies of
G1, the group of all isometries of R. Now, G1 is exponentially bounded [20,
Cor 12.12], and thus by Lemma 4 so is G. Thus, G is supramenable [20,
Thm. 12.8] and the existence of a strongly G-invariant Popper function on
Rn with all non-empty subsets normal follows from [1, p. 7]. �

Proof of Theorem 4. Suppose F is a G-invariant field of subsets of Ω con-
taining all the Hn and P is a weakly G-invariant Popper function on F .
Let cP (A,B) = P (A|A ∪ B)/P (B|A ∪ B) as before. By Lemma 2, for all
reflections Rx with x ∈ Z/2, we have cP (RxA,B) = cP (A,B). Since these
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reflections generate G and in our present setting all members of G map Ω
onto itself, we have cP (gA,B) = cP (A,B) for all g ∈ G and A,B ∈ F .

Let T1 be the translation on Ω given by (T1ω)(n) = ω(n + 1). Observe
that T1 is a bijection of H2 onto H1 and T1 = R1R3/2 ∈ G. We thus
have cP (H1, H2) = cP (T1H2, H2) = cP (H2, H2) = 1. But cP (H1, H2) =
P (H1|H1 ∪ H2)/P (H2|H1 ∪ H2) = P (H1|H2) since H1 ⊆ H2, and hence
under the above assumptions we cannot have P (H1|H2) = 1/2. �
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