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Abstract. I shall argue that considerations about frequency-to-chance
inferences make very plausible some a localized version of the Principle
of Sufficient Reason (PSR). But a localized version isn’t enough, and so
we should accept a full PSR.

1. The Principle of Sufficient Reason

I will take the Principle of Sufficient Reason (PSR) to be the claim that
necessarily every contingent truth has an explanation (Pruss 2006).

It has been often noted that many of our ordinary epistemic practices
presuppose the existence of explanations. Rescher, for instance, talks of
how the investigators of an airplane crash do not conclude that there is
no explanation from their inability to find an explanation (Rescher 1995,
p. 2). But it is one thing to agree that the PSR holds for propositions
about everyday localized matters, and another to generalize to cosmic cases,
such as the origination of the universe. (Of course it would be difficult to
precisely define what counts as “localized”.) Still, we have a rough grasp
of localization: an LED lighting up is localized, while an infinite regress of
events or the complete state of our large universe presumably are not.

I will argue, however, that in order to make sense of our scientific epistemic
practices, we need a principle like the PSR that applies to global matters. In
doing so, I will draw on recent mathematical work on laws of large numbers
for nonmeasurable processes (Pruss 2013).

The argument begins with the local cases and generalizes to the global
ones.

I need to note that I understand the PSR to be compatible with inde-
terministic phenomena. The PSR is a claim that explanations exist, not
that deterministic explanations exist. The explanations might well be prob-
abilistic in nature, and might even involve low probabilities, as is widely
accepted in the philosophy of science (Salmon 1989). After all, giving expla-
nations is largely about making events understandable, and we understand
low probability chancy events as well as high probability ones (Jeffrey 1969).
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2. Local chances

2.1. Frequency to chance inferences. I will consistently use the word
“chance” to indicate probabilities that are the tendencies of stochastic pro-
cesses. Consider now this simple inference. A coin has been independently
flipped a thousand times, and about 750 times the coin has landed heads.
There is a very natural inference: The coin is loaded in such a way as to
have approximately a 3/4 chance of landing heads. This natural inference
leads to further predictions of the coin’s behavior.

Frequency-to-chance inferences like the above are everywhere, and induc-
tive reasoning to a universal generalization is arguably just a limiting case.

Let Cp be the hypothesis that the chance of the coin’s landing heads is
p. Plausibly, the inference in the coin example was based on the fact that
given Cp with p close to 3/4, it is very likely that about 750 times we will get
heads, while given Cp with p far from 3/4, this is unlikely. The reason for
this is a Law of Large Numbers: given a large number of independent and
identically distributed chancy trials, the frequency of an outcome among the
trials is likely to be close to the chance of the outcome.

There are difficulties here, of course, with how we determine that the coin
flips are independent and identically distributed. Independence perhaps is
backed by the fact that we just cannot find any memory mechanism for the
coin, and identical distribution by the fact that the coin flips appear to be
identical in all relevant respects. The questions of how exactly one cashes
out these considerations are difficult, but they are not the questions I want
to focus on.

Instead, I want to focus on why there are probabilities at all. Our intu-
itive Bayesian-flavored reasoning was based on comparing the probability of
our observed frequencies on the different hypotheses Cp. But what about
hypotheses on which there are no probabilities of frequencies? In the next
subsection, I will sketch a picture of how such hypotheses might look by
making use of nonmeasurable sets. A reader who wishes to avoid mathe-
matical complication may wish to skip that subsection.

The basic idea behind the technicalities is to imagine a case where we
pick out a series of heads and tails results by throwing a dart at a circular
target, and deeming heads to have occurred when the dart lands within some
set A and tails to occur otherwise. But we will take the set to be utterly
nonmeasurable (“saturated nonmeasurable”): it has no area, and doesn’t
even have a range of areas. I will then argue on technical grounds that the
hypothesis that coin toss results were generated in such a way can neither
be confirmed nor disconfirmed by observation. But in order to confirm an
alternate hypothesis—say that a series of heads/tails results was the result
of a sequence of fair coin tosses—we need to rule out the hypothesis that it
was generated in some “nonemeasurable” way like this.

2.2. Nonmeasurable sets. So suppose coins are being flipped in this
roundabout way. A dart with a perfectly defined tip (say, infinitely sharp or
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perfectly symmetrical) is uniformly randomly thrown at a circular target.
There is a region A of the target marked off, and a detector generates a
heads toss (maybe in a very physical way: it picks up the coin and places it
heads up) whenever the dart lands in A; otherwise, it generates a tails toss.

The chance of the coin landing heads now should be equal to the propor-
tion of the area of the target lying within A, and we can elaborate Cp to the
hypothesis that the area of A is pT , where T is the area of the whole target.
Given the observation of approximately 750 heads, it seems reasonable to
infer that probably the area of A is approximately (3/4)T .

But what if an area cannot be assigned to the marked region A? Famously,
given the Axiom of Choice, there are sets that have no area—not in the sense
that they have zero area (like the empty set, a singleton or a line-segment),
but in the sense that our standard Lebesgue area measure cannot assign
them any area, not even zero. In such a case, there will also be no well-
defined1 chance of the dart hitting A, and hence no well-defined chance of
heads. Let N be the hypothesis that A has no area, i.e., is non-measurable.

Now, here is a fascinating question. If N were true, what would we be
likely to observe? Of course, if we perform 1000 tries, we will get some
number n of heads, and n/1000 will then be a frequency between 0 and
1. We might now think as follows. This frequency can equally well be any
of the 1001 different numbers in the sequence 0.000, 0.001, . . . , 0.999, 1.000.
It seems unlikely, then, that it’s going to be near 0.750, and so C3/4 (and
its neighbors) is still the best hypothesis given that the actual frequency is
0.750.

But this reasoning is mistaken. To see this, we need to sharpen our
hypothesis N a little more. There are non-measurable sets A where we can
say things about the frequency with which A will be hit. For instance, it
could be that although A is non-measurable, it contains a measurable set
A1 of area (0.74)T and is contained in a measurable set A2 of area (0.76)T .
(Think of A as 74% of the target plus a nonmeasurable set localized to an
area containing only 2% of the target.) But the dart will hit A1 about 74%
of the time, and A2 about 76% of the time. Whenever the dart hits A1, it
hits A, and whenever it hits A, it hits A2, so we would expect the dart to hit
A approximately 74% to 76% of the time. And so our observed frequency
would be no surprise.

The mere fact that A is nonmeasurable does not rule out probabilistic
predictions about frequencies, because a nonmeasurable set might be “quite
close” to measurable sets like A1 and A2 that bracket A from below and
above.

However some sets are not only nonmeasurable, but saturated nonmeasur-
able. A set A is saturated nonmeasurable provided that all of A’s measurable
subsets have measure zero and all measurable subsets of the complement of

1One wants to say “no chance”, but that suggests “zero chance”, which is not what
one is saying.
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A are also of measure zero. Given the Axiom of Choice, for Lebesgue mea-
sure on the real line, there not only are nonmeasurable sets, but there are
saturated nonmeasurable sets (Halperin 1951).2

When A is saturated nonmeasurable, no method of generating predictions
by bracketing a the probabilities into an interval, like the one from 74% to
76%, will work. The only measurable subsets of A will have zero area and
the only measurable supersets of A will have area T . So our bracketing
will only tell us the trivial fact that the frequency will be between 0 and 1,
inclusive.

Let M then be the hypothesis that A is saturated nonmeasurable. Can
we say that given M , the frequency is unlikely to be near 0.750?

The answer turns out to be negative even if we have infinitely many ob-
servations. Pruss (2013) has given a plausible mathematical model of an
infinite sequence of independent identically distributed saturated nonmea-
surable random variables, and it follows from his Theorem 1.3 that for any
nonempty interval I which is a proper subset of [0, 1], the event that the lim-
iting frequency of the events is in I is itself saturated nonmeasurable. Thus,
even with infinitely many independent shots, we could say nothing proba-
bilistic about the observed frequency of hits of our saturated nonmeasurable
set being near 0.750: the probability would neither be large nor small. And
analogous claims can be argued for in finite cases by building on the tools
in that paper (see Theorem 2 in the Appendix).

So in our case above, if I is some small interval like [0.740, 0.760] centered
on 0.750, there is nothing probabilistic we can say about the observed fre-
quency being in I when the target set is nonmeasurable as the event of the
frequency being in I is then saturated nonmeasurable. In particular, we can-
not say that the frequency is unlikely to be near 0.750 (nor that it’s likely to
be near). The observation of a frequency close to 0.750 is neither surprising
nor to be expected given that the target set is saturated nonmeasurable.

Our probabilistic reasoning thus cannot disconfirm hypotheses of satu-
rated nonmeasurability. Such hypotheses endanger all our local scientific
inferences from observed frequencies to chancy dispositions, inferences cen-
tral to our epistemic practices. Yet our local scientific inferences are, surely,
good. If we cannot disconfirm saturated nonmeasurability hypotheses a
posteriori, then we need to do so a priori.

Kleinschmidt (2013) defends a presumption of explanation principle
(“EP”) on which we are justified in presuming explanation, by analogy with
our presumption that a student coming late to class was not struck by light-
ning, even though people are struct by lightning. She then writes: “In the
lightning case, we can explain our reluctance by noting that we justifiably

2If A0 is a saturated nonmeasurable subset of the interval [0, 1], then the Cartesian
product A0 × [0, 1] will be a saturated nonmeasurable subset of the square [0, 1]2. (There
is also a directly two-dimensional construction in Sierpiński 1938.) Intersecting this with
a disc of radius 1/2 centered on (1/2, 1/2) yields a saturated nonmeasurable region for a
disc-shaped area, like in our example.
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believe, partly due to induction, that lightning strikes rarely. We might hope
to give a similar explanation of our endorsement of EP.” But while we can
say what it would look like if lightning was more common than we think it to
be—and thus we can say on empirical grounds that it is not so—the upshot
of our argument is that we cannot say what it would look like if there were
more unexplained events than we think, and hence cannot say on empirical
grounds that it is not so.3

Another approach would be to assume low prior credences for hypotheses
of saturated nonmeasurability. But it is difficult to justify this in a way that
is not ad hoc. Given the Axiom of Choice, there are just as many saturated
nonmeasurable subsets of, say, [0, 1] as there are measurable ones (see the
Corollary in the Appendix). Granted, subjective Bayesians may not worry
too much about the ad hoc in the choice of priors, but the reason they
do not worry is because of the hope that evidence will swamp the priors
and make them irrelevant. But evidence cannot affect the credence of the
nonmeasurability hypotheses, since those hypotheses do not generate the
kinds of likelihoods that are needed for confirmation or disconfirmation,
and so one would simply be stuck with the ad hoc priors.

Note, however, that the credences of such hypotheses would have to be
very low indeed: they would have to be zero or infinitesimal. I sketch the
argument in a simple case. Suppose that N is a hypothesis according to
which the coin tosses are independent (in the sense of Pruss 2013) saturated
nonmeasurable sets. Suppose that P (N) > 0 and that the only alternative
to N is the hypothesis H that the coin tosses are fair and independent so
that P (H) = 1 − P (N). Let E be the observed evidence—a sequence of n
coin toss results (say HTHHHTH if n = 7). We would like to be able to
use Bayes’ Theorem to say that the probability of H given the evidence is:

P (H | E) =
P (E | H)P (H)

P (E | H)P (H) + P (E | N)P (N)
.

3Kleinschmidt (2013) also attempts to give counterexamples to the PSR on the basis of
cases involving the diachronic identity and synchronic composition of persons. Why, for
instance, does cloud of atoms in group G1 compose a person while the cloud of atoms in
group G2, which differs only by a single atom, does not? (The fission case can be handled
analogously. A full response to her intricate arguments would take us too far a field, but
the facts underwriting the composition claims are either necessary or contingent. Since
I am only defending a PSR for contingent truths, it is only the conitngent option that I
need consider. But even without assuming the PSR, simply using Kleinschmidt’s own EP,
it will count very strongly against a theory on which it is contingent that an arrangement
of atoms composes a person if the theory can give no explanation of why it happens to do
so. Consider, for instance, dualist theories on which souls attach to some groups of atoms
with no explanation as to why they attach to the ones they attach to. Those theories
are implausible precisely because of the explanatory failure. And the same will be true of
those materialist theories on which it is a brute unexplained fact that some atoms compose
a person. Kleinschmidt has not shown that there is a brute-composition theory that is
still plausible after taking into account her own EP.
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Unfortunately, the term P (E | N) in the denominator is not a number, since
E is saturated nonmeasurable conditionally on N . But we can, nonetheless,
use Bayes’ Theorem. We can model the probability of a nonmeasurable
set by an interval of numbers. In the case of P (E | N), the interval will
range all the way from 0 to 1, i.e., will be [0, 1]. Fortunately, only one of
the quantities on the right-hand-side corresponds to an interval: the other
quantities, P (E | H), P (H) and P (N) are ordinary classical probabilities.
We can then use the range of the interval P (E | N) and Bayes’ Theorem to
define an interval-valued probability for P (H | E).

Since P (E | N) is the interval [0, 1], one endpoint for the interval cor-
responding to P (H | E) will be given by replacing P (E | N) in Bayes’
Theorem with zero:

P (E | H)P (H)

P (E | H)P (H) + (0) · P (N)
= 1.

This turns out to be the upper endpoint. The second endpoint—the lower
one—will correspond to replacing P (E | N) with one, the other endpoint of
its interval:

P (E | H)P (H)

P (E | H)P (H) + (1) · P (N)
.

Now, P (E | H) = (1/2)n. It follows that this lower endpoint of the in-
terval given by P (E | H) is less than or equal to:(1/2)n/P (N). There-
fore, the interval-valued probability P (H | E) will contain the interval
[(1/2)n/P (N), 1].4

As long as P (N) is strictly bigger than zero and not infinitesimal, it
follows that as n goes to infinity—i.e., as the amount of evidence gathered
increases—the hypothesis H gets to have a probability range closer and
closer to [0, 1]. But in order to get confirmed, to become believable, H would
have to be an interval of probability like [a, b] where a is close to one, not
close to zero. So the more evidence we gather, the broader our probability
interval for H. This is Bayesian divergence rather than convergence. As
we observe more coin-flips, the nasty hypothesis N infects our probabilities
more and more.

One could try to claim that P (N) is infinitesimal, but that would seem
to be ad hoc. Alternately, one might try to completely a priori rule out
pathological hypotheses, ruling them to have probability zero. For instance,
one might simply deny any version of the Axiom of Choice strong enough to
imply the existence of nonmeasurable sets. Or one might deny the possibility

4This argument is simpler than the usual kind of reasoning with interval-valued prob-
abilities (e.g., Whitcomb 2005), because only one of the quantities involved is an interval.
We can justify the argument more rigorously by thinking of interval valued probabilities
as determining a family of classical probability functions, and then applying Bayes’ The-
orem to each member of the family. The only relevant variation between members of the
family will be as to the value assigned to E given N , and that will range between 0 and
1, thereby generating a range for the posterior probability containing [(1/2)n/P (N), 1].
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of physical processes sensitive to whether an input falls into a pathological
set.

2.3. No-explanation hypotheses. But clever mathematical construc-
tions are not the only potential source of probabilistic nonmeasurability
in the physical world. Suppose a coin is tossed, but there is a hypothesis H
that there will be no explanation at all of how the coin lands. Simplify by
assuming that the coin must land heads or tails. Then I contend that the
event of the coin landing heads has no probability conditionally on H.

For suppose it has some probability. What is it? The only non-arbitrary
answer seems to be the one given by symmetry or the Principle of Indif-
ference: 1/2. And, generalizing, the only non-arbitrary probability for any
particular fixed sequence of n tosses on a no-explanation hypothesis will be
2−n. But if that is the answer, then the no-explanation hypothesis cannot
be empirically distinguished from the hypothesis that the coin tosses form
an independent sequence of stochastic events each with probability 1/2 of
heads, as both hypotheses predict the same behavior.

In fact, although 1/2 is the only non-arbitrary answer, the arbitrary an-
swers face exactly the same problem. For each possible answer, arbitrary
or not, to the question of the probability that the coin lands heads condi-
tionally on the no-explanation hypothesis, there is a possible stochastic pro-
cess hypothesizing which yields the same prediction as the no-explanation
hypothesis does. And then no amount of observation can rule out the no-
explanation hypothesis. Whether this is a serious problem will depend on
whether we can rule out the hypothesis a priori, an option we will discuss
later in this section.

Formal results on nonmeasurable sets like those discussed in Section 2.2
model not only those events that are saturated nonmeasurable due to their
pathological set theoretic construction but also those that are nonmeasurable
simply because no probabilities can be assigned to them.

Within a probabilistic framework, there are now three possibilities. Either
(a) conditioning on a no-explanation hypothesis yields an exact probability,
or (b) it yields no probability at all, or (c) it yields a probability range or
interval. If it yields an exact probability, then we cannot empirically distin-
guish the no-explanation hypothesis from an explanatory chance hypothesis
whose chance assignment matches that exact probability. If it yields no
probability at all, not even a range of probabilities, we are dealing with a
saturated nonmeasurable event, and our formal results tell us that we can-
not make any probabilistic predictions about frequencies, and in particular
cannot say whether it is likelier or less likely that we would get the same
observations from an explanatory chance hypothesis.

Now consider the third option, that of a probability range. Perhaps when
we condition on the no-explanation hypothesis, we get an interval [a, b] of
probabilities with a < b and [a, b] 6= [0, 1]. In such a case we can make
some probabilistic predictions by the Law of Large Numbers (Pruss 2013,



8 ALEXANDER R. PRUSS

inequality (1)), namely that limiting frequencies are almost surely going to
be between a and b (both inclusive). It can be shown that nothing stronger
can be shown about the limiting frequencies than that they are between a
and b (Pruss 2013, Theorem 1.3). But a no-explanation hypothesis assigns at
best the full range [0, 1] to the probability, and so the only thing that follows
from the no-explanation hypothesis is that the frequencies range between 0
and 1, which is trivially true. We cannot, thus, say that a particular set of
observed frequencies fits worse or better with the no-explanation hypothesis
than with some explanatory hypotheses: all frequencies fit equally well with
the no-explanation hypothesis.

Thus, whether or not the no-explanation hypothesis has a probability,
and whether this probability is exact or an interval, the no-explanation
hypothesis cannot be ruled out empirically. It is simply not amenable to
statistical methods, or if it is amenable, it is amenable in the wrong way:
The argument based on an interval-based interpretation of Bayes’ Theorem
given at the end of Section 2.2 shows that once we have a non-zero non-
infinitesimal probability of a no-explanation hypothesis, we end up with
poorer and poorer confirmation of serious explanatory hypotheses the more
data we gather.

So the no-explanation hypothesis must be ruled out a priori. There
are two initially attractive proposals for doing so. We can say that no-
explanation hypotheses simply cannot hold. That would be to subscribe to
a localized version of the PSR. Or we could simply say that no-explanation
hypotheses have very low prior probabilities.

But as in the case of saturated nonmeasurability, it is unsatisfactory to set
low priors for no-explanation hypothesis. Any values for these priors would
be arbitrary once we allowed for the possibility of their truth, and the usual
subjective Bayesian hope that arbitrary priors will eventually be swamped
by evidence (a classic statement of this is in Edwards, Lindman and Savage
1963, p. 197) is not applicable given the non-amenability of no-explanation
hypotheses to empirical study.

One might compare the low priors for no-explanation hypotheses to the
low priors we assign some other wacky hypotheses. For instance, our prior
for the aberrant hypothesis that the gravitational force between two objects

of mass m1 and m2 at distance r apart has magnitude Gm1m2/r
2+10−100

will presumably be very small, since otherwise we could never conclude that
the actual magnitude of the force is Gm1m2/r

2, as the aberrant hypothesis
cannot be empirically distinguished from the Newtonian hypothesis.

On its face, the analogy fails because we reject the Gm1m2/r
2+10−100

hypothesis on the grounds that it does not have the kind of simplicity we
expect in explanatory hypotheses, while bald no-explanation hypotheses are
actually simpler than any explanatory hypotheses.

But perhaps the analogy is this: in both the no-explanation and wacky
gravity cases, our only reason for assigning low priors is that if we assigned
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high priors, we couldn’t do science. We cannot justify the assignment of low
priors in any other way, and do not need to.

Neither case of assignment of low priors without further justification is
satisfactory, but it is better to be in one unsatisfactory situation than two.
Furthermore, one could hope that an inductive logic of a Carnapian variety
might eventually non-arbitrarily justify low probability assignments to more
complex hypotheses—but this won’t help with, and in fact will exacerbate,
the problems with very simple no-explanation hypotheses.

Finally, the defender of a global PSR has some hope of being in neither
unsatisfactory situation. For not only has she ruled out all no-explanation
hypotheses, but she has some hope of arguing to a global explanation that
assigns lower probabilities to more complex scientific hypotheses. For it
may be that the global explanation is one that, like the theistic and opti-
malist/axiarchist global explanation proposals, makes better states of affairs
more likely.5 And simpler laws are better, both aesthetically and instrumen-
tally.

Thus far I have argued that we need some kind of localized PSR as a
metaphysical principle to rule out no-explanation hypotheses on which our
observations simply have no probability. A central claim is that if nothing
can be said about the probabilities of individual events, then nothing can
be said about the probabilities of observing frequencies of events in a se-
quence, even an infinite sequence, of observations. Thus, the no-explanation
hypotheses cannot be ruled out observationally, since to do that we would
have to say that our observations are improbable on the no-explanation
hypothesis.

A tempting response to the arguments of this section is to say that just
as it counts a posteriori against a hypothesis when our observations have
low probability on it but have high probability on an alternative, it counts
a posteriori against a hypothesis when our observations have no probabil-
ity on the hypothesis but have high probability on an alternative. But if
no possible sequence of observations has any meaningful probability on a
no-explanation hypothesis, then by this principle every possible sequence
of observations would disfavor our no-explanation hypothesis (since every
sequence is probable on some explanatory hypothesis). But if E is evi-
dence against a hypothesis, then the negation of E will be some evidence
for the hypothesis. But if evidence has no probability on the no-explanation
hypothesis, the negation of that evidence also has no probability on the
no-explanation hypothesis, and so by the suggested principle both E and

5Optimalism/axiarchism as formulated by Leslie (1979) and Rescher (2010) make the
best option be necessary. But an interesting variation would be a theory on which value
simply makes a world more likely.
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its negation would count as evidence against the no-explanation hypothesis,
which appears absurd unless the no-explanation hypothesis is impossible.6

3. Globalizing

3.1. Small worlds. Can we have a local PSR without a global one? One
can try to give restricted PSR-like principles that can be applied to local
states of affairs without being applicable to global ones (for a critical dis-
cussion, see Koons 2006). This would allow one to secure the advantages of
the PSR for scientific reasoning while avoiding the disadvantages of (a) sig-
nificant ontological commitment—after all, the PSR has been used to argue
for grand hypotheses like the existence of God—and (b) van Inwagen style
arguments against a global PSR (van Inwagen 1983, pp. 202–204).

It is not clear, however, whether a localized PSR avoids the problems, if
it’s taken to be a metaphysical principle and hence metaphysically necessary.

First of all, a localized PSR applied to a small world can produce the
same kinds of ontological commitment as a global PSR applied to a big
world. Plausibly, it is possible to have a walnut world—a world with a finite
past whose contingent components have always consisted of a single basically
unchanging but otherwise ordinary walnut7 and its parts (cf. the ball thought
experiment in Taylor 1974, pp. 105–106). When we apply the localized PSR
to the walnut—which is as local as something can be—we conclude that
there is an explanation of the walnut. The existence of our walnut is not
explained by the activity of its parts, so this walnut’s explanation would
have to go beyond it. But as there is nothing contingent outside the walnut
in the walnut world, the explanation would have to invoke something that
exists necessarily or some kind of necessary metaphysical priniciple. And
this being or principle that is necessary at the walnut world would also be
necessary at the actual world by the axiom S5 of the most popular system
of modal logic (S5 says that if a proposition is possibly necessary, it is
necessary; necessities cannot vary between possible worlds), so we have not
avoided significant ontological commitment by supposing a localized PSR.
Granted, this argument uses S5, but having to deny S5 would also be a case
of significant metaphysical commitment. So a localized PSR has similar
commitment-engendering features to its grander relatives.

Van Inwagen’s argument against the PSR is based on forming the con-
junction of all contingent truths and asking for the explanation of this con-
junction. If this explanation is itself a contingent truth, then we absurdly
have a case of self-explanation, since in explaining the conjunction of all
contingent truths, this contingent truth explains itself, being one of the con-
juncts. If, on the other hand, the explanation is a necessary truth, then

6If a hypothesis is impossible, we may be able to give an argument for its impossibility
starting with E and another argument for its impossibility starting with the negation of
E.

7Or, more precisely, an exact duplicate of an ordinary walnut. It may be an essential
property of a walnut per se that it come from a walnut tree.
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we have a puzzle about how a necessary truth can explain a contingent one.
One way to set up the puzzle is by invoking the principle that if p explains q,
then p entails q. Van Inwagen explicitly affirms this principle (van Inwagen
1983, p. 203), though he uses the “sufficient reason” in place of “explana-
tion”. But in the case of explanation, this principle is widely denied in the
philosophy of science in the light of the existence of stochastic explanations
(see, for instance, Salmon 1989), so it is better to leave the argument as
simply based on the bare intuition that a necessary truth cannot explain
a contingent one, which intuition I will call the “Van Inwagen Principle”
(VIP).

But our best story about how the walnut in a walnut world can be ex-
plained involved the explanation of the walnut’s existence by means of a
necessary being or a necessary metaphysical principle. The principle-based
explanation could perhaps involve something like a stochastic axiarchism,
where the chance of a universe arising is proportional to its value, but what-
ever that would look like, it would be a violation of VIP. And the most
obvious way to take the explanation of the walnut’s existence by means of
a necessary being would be to take it that necessary truths about the exis-
tence and essential properties of the being explain why the walnut exists, in
violation of VIP.8

So as long as the localized PSR is a metaphysical principle, we do not
actually gain much if anything from eschewing a global principle, since we
get results similar to those of a global PSR when we apply the localized PSR
in a small world.

Dean Zimmerman has suggested to me that locality could also be taken
relative to the size of the whole universe. On the reading, a localized PSR
would apply to, say, the molecules of the walnut in the walnut world, but
not to the walnut as a whole. But it would be implausible to think that a
walnut does not need an explanation when it is all alone, so that its existence
is not localized, but needs one when it is but one among many things.

3.2. Global probabilities. But there is further reason to accept a global
PSR. A localized PSR is insufficient to solve the kinds of probabilistic prob-
lems that led us to it.

8Someone who resists a global PSR but accepts a local one might also try to explain the
walnut’s existence by supposing an infinite regress of contingent properties of a necessary
being. Perhaps the necessary being is a person who decided at t0 to create the walnut,
and did so on the basis of a contingent mental state that was caused by the person’s
contingent thoughts at t−1; these thoughts were then caused by yet earlier contingent
thoughts at t−2, and so on. In this case, a localized PSR is satisfied: each localized
event—the existence of the walnut, the choice at t0, the thoughts at t−1, and so on—
is explained. The whole sequence of thoughts is not explained, however, which blocks
the van Inwagen argument. Notice, however, that we only avoid violation of VIP by
further ontological commitment, namely supposing an infinite regress of contingent states
of a necessary being. Furthermore, this ontological commitment runs afoul of the modal
intuition that there is a possible world containing the walnut and only at most finitely
many contingent states that aren’t states of the walnut.
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Consider universes which have a finite past but exist over an interval of
times open at the lower end, say an interval modeled by the semi-infinite
interval {t : t > 0}. For each instantaneous state of such a universe, there
is an earlier state, but there is no earliest state. It has been argued by
Grünbaum (1993) that our universe is like that. Let us further assume that
each state is explained by an earlier state.

A localized PSR will not apply to the infinite regresses of states we find
in such universes. Thus, a localized PSR will be compatible with an unex-
plained no-beginning finite-past universe.9 But then there will be no mean-
ingful chances for the existence of such universes, and hence no non-arbitrary
reason to prefer the hypothesis we think is true—a universe that begins with
a Big Bang about 13.8 billion years ago—over aberrant hypotheses such as
Russell’s five-minute hypothesis on which the universe is five minutes old
with the twist that there is no initial moment (compare Koons 2006, Sec-
tion 2.1).

This was too quick. Although there are no chances associated with the
two hypotheses, maybe there are epistemic probabilities. But what reason
do we have to take the precise limiting sequence of states that we think
obtained after the Big Bang to be more probable than the limiting sequence
of states in the five minute hypothesis? Again, we would have to assign an
arbitrary epistemic probability. One might think that of all possible un-
explained no-beginning finite-past universes, the five-minute universe (i.e.,
the one that coincides with what we take to be our universe over the past
five minutes, without an initial time) has an initial segment that is too
elaborate—festooned with galaxies and stars as it is, and with at least one
planet of very complex life—to come into existence without an explanation,
while the Big Bang universe’s initial segment is not as elaborate. But both
initial sequences of states live in the same configuration space, and there does
not appear to be a reasonable way to privilege the Big Bang sequence over
the five-minutes-ago sequence as an option for coming into existence cause-
lessly ex nihilo. For what it’s worth there is even an intuition preferring the
five-minutes-ago sequence. For one would intuitively expect an unexplained
universe would have high entropy, and the states in the five-minutes-ago
sequence have higher entropy than the states in the post-Big-Bang sequence
do.

But suppose that we have some way of arguing that the Big Bang hypoth-
esis is simpler than the five-minute hypothesis. We can beat the Big Bang
hypothesis in respect of simplicity. Consider the hypothesis that reality con-
sists of short truncated backwards light cone (say, extending backwards one
minute), with no initial state, centered on the present state of my brain.
This hypothesis supposes only a tiny fraction of the complexity of our gi-
gantic universe (indeed even of our solar system), and there will be a lot

9Hume (1779, Part IX) has argued that an infinite causal regress is explained by the
causes within it. However the discussion of the beginningless cannonball flight thought
experiment in Pruss (2006, Section 3.1.4) makes this implausible.
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more simplicity than in the Big Bang story. After all, it is a part of the
Big Bang story that the world evolved in the kinds of complex ways that
resulted in a life full of earth, many galaxies, and so on. All the details of
this complexity will have free parameters, either determined at the time of
the Big Bang or set by later chancy events.

Thus a priori simplicity arguments do not rule out our aberrant hypothe-
ses. We really do seem to need a PSR.

4. PSR-compatible aberrant hypotheses

Our argument for the PSR was that it allows us to reject aberrant local
and global hypotheses that we have no a posteriori way of rejecting. A
natural response is that there are aberrant hypotheses that are compatible
with the PSR as well, and the PSR only pushes the problem back a step.

For consider the hypothesis that a necessarily existing being with the
essential property of being a science-hater creates a universe that appears
very much other than how it is. If the PSR is restricted to contingent
states of affairs, as in Pruss (2006), then it is compatible with this aberrant
hypothesis. Compare this to the hypothesis that a necessarily existing being
with the essential property of being a science-lover creates a universe that
allows us to make correct scientific predictions. We cannot compare the
science-lover and science-hater hypotheses by means of chances. By S5,
each hypothesis is either necessarily true or necessarily false, and hence has
chance 1 or chance 0, but we don’t have access to these chances except by
figuring out which hypothesis is true.

However, in the realm of PSR-compatible hypotheses, we can make use of
simplicity reasoning to rule out aberrance. For instance, the science-hater
hypothesis has many free parameters: just how much does the science-hater
hate science and in what respects, how powerful is it, etc. And there does
not seem to be any canonical set of values for these free parameters. On the
other hand, there is a canonical science-lover hypothesis in the literature,
namely the theistic hypothesis that there exists a perfect being, who has
maximal power, maximal knowledge and loves all that is fine and good
precisely in proportion to how fine and good it is. And of course science
getting at the truth is fine and good.

And while there will be many variants of the stochastic axiarchic hypoth-
esis that universes are likely to come into existence to the extent that they
are good, depending on just how the direct relationship between value and
chance works, it could turn out that a broad range of them would produce
non-aberrant stories.

5. Conclusions

Where there are no explanations, there are no chances. Where there are
no chances, it is difficult to have non-arbitrary probabilities. In some cases,
we can have non-arbitrary probabilities based on simplicity considerations.
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In others, perhaps by indifference considerations. But neither simplicity
nor indifference considerations help with rejecting aberrant no-explanation
hypotheses that undercut the scientific enterprise. We need a PSR, and not
just one restricted to local situations, but a global one.

Finally, while our arguments above took for granted that chances were
governed by the axioms of classical probability theory, it may be that we
should relax this assumption. For instance, while a rational agent tends to
act in proportion to the strength of her reasons, it would be hasty suppose
that this tendency can be quantified by classical probability theory. More-
over, global explanatory hypotheses are unlikely to give rise to numerical
chances, if only for cardinality reasons—likely, there is no set of all possible
worlds (e.g., Pruss 2001), and classical probability theory is defined over
sets of possibilities. But the main point of the paper should remain: where
there are no explanations, there are no chances—whether the chances are
understood as classical probabilities or are governed by some more complex
calculus—and hypotheses that do not give rise to some sort of chances need
a priori refutation.

Appendix: Some results about nonmeasurable sets

A set is saturated nonmeasurable with respect to a probability measure
provided that all measurable subsets have measure zero and all measurable
supersets have measure one.

Theorem 1. Assuming the Axiom of Choice, the cardinality of the set of
all saturated nonmeasurable subsets of [0, 1) is equal to the cardinality of the
set of subsets of [0, 1).

For the proof, we need the following easy Lemma. Let A∆B be the
symmetric difference (A − B) ∪ (B − A) of the sets A and B. Recall that
every subset of a set of Lebesgue measure zero is measurable and has measure
zero.

Lemma 1. If A is a saturated nonmeasurable subset of [0, 1) and A∆B is
a set of Lebesgue measure zero, then B is saturated nonmeasurable.

Proof of Lemma 1. For any set C, the set B ∩C differs from A∩C at most
by a set of measure zero since A∆B has measure zero, and any two sets
that differ by a set of measure zero must either both be measurable or both
nonmeasurable.

Thus, if C is a measurable subset of B, it follows that A∩C differs from
C by a set of at most measure zero. Thus, A∩C is a measurable subset of A,
hence has measure zero, and hence C also has measure zero since it differs
from it by at most a set of measure zero. This argument shows that if all
measurable subsets of A have measure zero, the same is true for B. Applying
this argument to the complements [0, 1) − A and [0, 1) − B, and using the
observation that all measurable supersets of U that are subsets of [0, 1) have
measure 1 if and only if all measurable subsets of [0, 1) − U have measure
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zero, we conclude that all measurable subset of [0, 1)−B have measure zero,
from which we conclude that all measurable supersets of B that are subsets
of [0, 1) have measure 1. Thus, B is saturated nonmeasurable. �

Proof of Theorem 1. Famously, the Cantor middle-thirds set C ⊆ [0, 1)
is a set of zero measure that has the same cardinality c as all of [0, 1).
Given any one saturated nonmeasurable subset S of [0, 1) (these exist by
Halperin 1951), for each subset A of C let SA = (S − A) ∪ A. Then
SA ∆S ⊆ C, and hence SA is saturated nonmeasurable. There are as many
sets SA as subsets of C, and there are as many subsets of C as of [0, 1). �

The fact that the number of subsets of the Cantor set equals the number of
subsets of [0, 1) and that every subset of a set of zero measure is measurable
also yields:

Corollary. Assuming the Axiom of Choice, the cardinality of the set of sat-
urated nonmeasurable sets is equal to the cardinality of the set of measurable
subsets of [0, 1).

Following Pruss (2013), I will model independent sequences of nonmea-
surable events E1, . . . , En as follows. We have a probability space (Ω,F , P )
which is a product of probability spaces 〈Ωk,Fk, Pk〉 for 1 ≤ k ≤ n. Then
for each k, we suppose that the event Ek depends only on the factor Ωk (this
is how one models independence). This means that Ek can be written as

Ek = {〈ω1, . . . , ωn〉 : ∀i(ωi ∈ Ωi) &ωk ∈ Uk},
for some subset Uk of Ωk.

Let N be a “nonmeasurable random variable” representing the number of
events Ek that happen, i.e., N is a function from Ω to the natural numbers
such that N(ω) equals the cardinality of the set {k : ω ∈ Ek}.

Then we have:

Theorem 2. Suppose E1, . . . , En are saturated nonmeasurable. Let J be
any non-empty proper subset of {0, . . . , n}. Then the event NJ = {ω ∈ Ω :
N(ω) ∈ J} is saturated nonmeasurable.

Hence nothing non-trivial can be probabilistically said about the number
of the Ek that occur.

The proof of Theorem 2 will use the terminology in Pruss (2013). In
particular, for any function f , measurable or not, on a probability space
there is a maximal nonmeasurable minorant f∗ and a minimal nonmeasurable
majorant f∗ such that f∗ ≤ f ≤ f∗ and such that for any measurable
functions g and h such that g ≤ f and f ≤ h we have g ≤ f∗ almost
everywhere (i.e., outside of some set—perhaps empty—of probability zero)
and h ≥ f∗ almost everywhere.

Proof. Define the function Ψk on Ωk by Ψk(ω) = 1 if ω ∈ Uk and Ψk(ω) = 0
otherwise. Define the function Yk on Ω by Yk(〈ω1, . . . , ωn〉) = Ψk(ωk). Thus,
Yk(ω) is 1 if ω ∈ Ek and 0 otherwise.
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Because Ek is saturated nonmeasurable, (Yk)∗ = 0 (almost everywhere—I
will omit such qualifications from now on) and (Yk)∗ = 1. It follows from
Pruss (2013, Proposition 1.2) that (Ψk)∗ = 0 and (Ψk)∗ = 1. It follows that
Uk is a saturated nonmeasurable subset of Ωk. Let P k and P k be probability
measures on Ωk extending P to a σ-field that includes Ek and such that
P k(Uk) = 0 and P k(Uk) = 1. These exist by Pruss (2013, Lemma 1.5): just
let f in the Lemma be Ψk.

Now let j be any member of J . Let Q be the probability measure on Ω
formed as the product of the probability measures P 1, . . . , P j , P j+1, . . . , Pn.
Then Q(Ek) = 1 if k ≤ j and otherwise Q(Ek) = 0. Thus with Q-probability
1, exactly j of the Ek occur, and since j ∈ J , we have Q(NJ) = 1.

Let ` be any member of {0, . . . , n} − J . Let R be the product of the
probability measures P 1, . . . , P j , P j+1, . . . , Pn. Then R(Ek) = 1 if k ≤ `
and otherwise R(Ek) = 1. Hence, with R-probability one exactly ` of the
Ek occur, and since ` /∈ J , we have R(NJ) = 0.

Thus there is an extension of P on which NJ has measure zero and an
extension of P on which it has measure one, from which it follows (Pruss
2015, Lemma 2.3) that NJ is saturated nonmeasurable with respect to P .

�
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