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Abstract. We show that infinitesimal probabilities are much too small
for modeling the individual outcome of a countably infinite fair lottery.

1. Introduction

Consider a fair lottery with an infinite number of tickets, numbered by the
set N = {1, 2, ...} of natural numbers. What is the probability of getting any
particular result, say 1 or 94880? It can’t be any real number r > 0 on pain
of violating the total probability and finite additivity (there is no hope of
countable additivity here) postulates, since all outcomes must have the same
probability so that P ({1, ..., k}) = P ({1})+· · ·+P ({k}) = kP ({1}) = kr and
if k is sufficiently large, then kr will exceed 1. On the other hand, setting the
probability of particular outcomes to zero, violates Bayesian regularity—the
thesis that contingent propositions should have probabilities strictly between
0 and 1—and is counterintuitive because then the probability of getting ei-
ther 1 or 2, which will also have to be zero by finite additivity, is no greater
than the probability of getting 1. Furthermore, assigning zero to the proba-
bility of each particular outcome yields a merely finitely additive probability
measure, which results in paradoxes such as reasoning to a foregone conclu-
sion or paying not to receive information (Kadane, Schervish and Seidenfeld,
1996).

This has led a number of people (for instance, Wenmackers and Horsten,
forthcoming) to the idea that we should let the probability of a particular
outcome of the lottery be an infinitesimal number δ in some field like the
hyperreals that extends the real numbers. Unfortunately, this still is subject
to paradox. Because the standard part1 of the measure is still merely finitely
additive, we still have the paradoxes of reasoning to a foregone conclusion
and paying not to receive information, We still have a non-conglomerable
probability measure (this follows by applying the theorems of Schervish,
Seidenfeld and Kadane [1984] to the standard part of the measure); the
non-conglomerability can spill over into paradoxical results about matters

Forthcoming in Synthese. The final publication is or will be available at
link.springer.com.

1For any finite number x in an ordered field F extending the reals, there is a standard
part Stx, which is the unique real number such that x − Stx is infinitesimal (we can let
Stx = sup{y ∈ R : y < x}).
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other than infinite lotteries (Pruss, 2012); and no reasonable expected value
function here satisfies domination (Pedersen, manuscript).

But while those arguments show that the use of hyperreal infinitesimals
does not solve the problem, they raise an explanatory question: Why doesn’t
it? After all, intuitively hyperreal infinitesimals seem like just the right tool.
I shall offer two arguments in favor of a diagnosis of a fundamental problem
with assigning hyperreal infinitesimal probability here: such infinitesimals
are infinitely “too small” to give plausible probabilities of individual out-
comes in a countably infinite lottery.

There certainly are finitely additive measures that assign the same infin-
itesimal to every outcome of a lottery (e.g., the method of Bernstein and
Wattenberg, 1969, already readily adapts to yield this: see Wenmackers and
Horsten, forthcoming). But the problem is that of the many such measures,
none can assign a correct infinitesimal. For any finite positive γ, and any
finitely additive probability measure P that assigns probability δ to every
outcome in a sample space Ω, there is a finitely additive probability measure
P γ that assigns probability γδ to every outcome.2 So if we are to assign an
infinitesimal probability to the outcomes of an infinite fair lottery, we need
to choose a particular infinitesimal probability to assign. But which one
(this worry was already raised by Elga, 2004)? Alas, as we shall see, no
hyperreal infinitesimal probability is sufficiently large for a lottery on N.

Alan Hájek (2011) has argued that if we assign infinitesimal probabilities
to contingent probabilities to save Bayesian regularity, then an arms race
results, because we can then ask for probabilities on large hyperreal domains,
which will require higher-order infinitesimals, and so on. Our arguments
show that there is no arms race: the Bayesian simply loses in the case of
a countably infinite fair lottery, as infinitesimal probabilities are simply not
suited to restoring regularity.

Both of our arguments will use the notion of a positive hyperreal a being
infinitely larger than another positive hyperreal b. This will be written
“a >> b” and is defined to hold whenever a/b is infinite, or, equivalently,
b/a is infinitesimal. The first argument is perhaps more of an intuition
pump, while the second gives a more precise diagnosis of what has gone
wrong.

2. Argument one

Suppose Jim denies finite additivity of probabilities and assigns the prob-
abilities 1/10, 1/100 and 1/1000, respectively, to the outcomes of a lottery
that has three tickets and a guarantee that exactly one wins. It would beg
the question against Jim to say that his probabilities don’t add up to 1.

2Let P γ(A) = StP (A) +γ(P (A)−StP (A)). Then it is easy to see that P γ is a finitely
additive probability measure if P is, and P γ({n}) = γP ({n}) = γδ, since StP ({n}) = 0
as P ({n}) is infinitesimal.
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However, if we could get Jim to accept that there can be a perfectly un-
controversial lottery with three tickets that assigns the probabilities 1/2,
1/4 and 1/4, respectively, to the outcomes, we could then observe that the
probabilities that Jim assigned are each much smaller than the probabilities
assigned by the uncontroversial lottery. But surely there could not be a lot-
tery with the same tickets as Jim’s alleged lottery, and yet still with every
ticket being much more likely to win than in Jim’s lottery. That every ticket
in Jim’s lottery is much less probable than in the uncontroversial lottery is
a sign that Jim has assigned much too small probabilities to the outcomes.

Now, suppose that Jim has assigned infinitesimal probability δn > 0 to the
probability P1({n}) of each outcome of an infinite fair lottery (this argument
does not need the infinitesimal probabilities to be all the same). We could
try to fault Jim’s assignment for violating countable additivity, because the
sum of countably many infinitesimals is undefined, but that would likely beg
the question.

Nonetheless, we can extend the argument in the three ticket case. Con-
sider the uncontroversial classical infinite lottery with individual outcome
probabilities P2({n}) = 2−n. This probability assignment extends to an en-
tirely unparadoxical countably additive probability on N. Observe now that
for every individual outcome {n}, we have P1({n}) = δn << 2−n = P2({n}).
In other words, our controversial lottery assignment assigns an infinitely
smaller probability to each outcome than the unproblematic classical lot-
tery. And just as in the case of the problematic three-outcome lottery, this
gives us good reason to say that every ticket in the lottery with infinitesi-
mal outcome probabilities has been assigned a probability that is much too
small, indeed infinitely too small.

A variant formulation is to note that assigning probability 10−n to the
nth ticket, for every n, will assign too small probabilities to the tickets
(1/10 + 1/100 + 1/1000 + · · · is significantly smaller than 1). But then
a fortiori assigning an infinitesimal to every ticket will assign too small
probabilities to the tickets, since an infinitesimal is smaller than 10−n no
matter what natural number n we choose.

This argument works without change for infinitesimals in any non-Archimedean
field extending the real numbers.

3. Argument two

3.1. The basic argument. Suppose Jim assigns probability 1/100 to each
outcome of a fair lottery where it is guaranteed that exactly one of three
tickets wins, but Jim denies finite additivity. If we could get Jim to admit
that the probability of each outcome in a fair lottery with four tickets is 1/4,
then we should be able to convince him that the probabilities he assigned
in the three ticket case are much too small, since the probability of winning
a fair lottery does not go up as we increase the number of tickets. We shall
now run a version of this argument in the infinitesimal case.
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Let ∗N be the hypernaturals, i.e., the ordinary natural numbers plus the
infinite positive hyperintegers. For any n ∈ ∗N, let [n] = {k ∈ ∗N : 1 ≤ k ≤
n} be the set of the first n hypernaturals.

The structure of the basic argument will be this. I will show that for
any infinitesimal δ > 0, there is an infinitesimal β which is infinitely larger
than δ and an infinite set J of which N is a subset such that when we
consider an infinite fair lottery on J , then β is clearly the right infinitesimal
probability to assign to each particular outcome, assuming we are going to
assign infinitesimal probabilities at all. But the probability of winning a fair
lottery does not go up as we increase the set of possible winners, so if δ is
infinitely smaller than the probability of winning the larger lottery, then δ
is infinitely too small to give a plausible representation of the probability of
winning the smaller lottery. Thus every infinitesimal is infinitely too small
to model a countably infinite lottery.

So suppose that P1 is a finitely additive probability on N that assigns an
infinitesimal δ > 0 to every singleton and represents our countably infinite
fair lottery. Choose a hypernatural infinite number M small enough that
δ << 1/M .3

Now consider an infinite fair lottery on the set [M ] of all hypernaturals
less than or equal to M . Since M is infinite, this set is infinite. Once we have
accepted the idea that infinite fair lotteries should have infinitesimal outcome
probabilities, we will want to assign an infinitesimal probability for each of
the outcomes in the set [M ]. And while in the case of an infinite fair lottery
on N it is not clear which infinitesimal should represent the probability of a
particular outcome, there is an obvious answer as to what that infinitesimal
probability here should be: P2({n}) = 1/M for all n ∈ [M ].

But now observe that N is a proper subset [M ]. For any n ∈ N is finite,
and hence less than the infinite number M , while the infinite hypernatural
M is in [M ] but not in N. Thus we have the following situation: P1 which
allegedly models a fair lottery on the smaller set N assigns an infinitesimal δ
to every member of N, while P2 which with much greater plausibility models
a fair lottery on the larger set [M ] assigns an infinitely bigger infinitesimal
β = 1/M to every member of [M ]. Moreover, not only is the set [M ] larger
than N, but it is much larger, because N is countably infinite, while [M ]
is uncountably infinite (this is a well-known fact in the special case of the
hyperreals, but an elementary proof in a more general setting is given in the
Appendix).

If this pair of probability assignments were correct, then we could imagine
you bought a ticket in the fair lottery with countably many outcomes, and
now you are offered to switch to a new fair lottery which adds uncountably
more tickets but still has one and the same prize. The switch would obviously

3For instance, we might let M be the unique hypernatural number such that M ≤
1/
√
δ < M + 1. Then δ/(1/M) = Mδ ≤

√
δ. But

√
δ is infinitesimal if δ is, so δ << 1/M .
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be irrational, but according to the above assignments, you infinitely increase
your probability of getting the prize by switching.

Given the correctness of the assignment of probability 1/M in the second
lottery, the lottery with fewer tickets should assign at least 1/M . But in
fact it assigns δ, which is infinitely less than 1/M . Thus, the lottery on
the naturals has been assigned infinitely too small a value for each possible
outcome when it was assigned an infinitesimal in each case.

Here’s perhaps a more intuitive way to see what has gone wrong. Suppose
for simplicity that our infinitesimal δ is of the form 1/N for some hyper-
natural N . This might not be exactly true, but no matter what δ is, 1/δ
will be within distance 1 of some hypernatural, and then δ will be very
close to the reciprocal of that hypernatural. Now, if δ = 1/N , then δ cor-
rectly represents the individual outcome probabilities for a fair lottery on
[N ]. But N ⊂ [N ] and in fact [N ] is a much larger set. We can see that it
is much larger in two ways. First, there is a set [M ] that contains N such

that M << N (for instance, just let M be the result of rounding
√
N to

the nearest hypernatural). Second, [N ] is uncountable while N is countable.
So if δ is the right value for an outcome of a fair lottery on [N ] (or, in the
case where 1/δ is not hypernatural, is very close to that value), δ is much
too small for an outcome of a fair lottery on N.

3.2. Other extensions of the reals. For simplicity, our argument was
given in terms of the hyperreals, but the main argument extends directly
to the surreals and to any other totally ordered field extensions of the reals
which contain a plausible analogue to the hypernaturals (in that direction,
see Mourges and Ressayre, 1993, and the Appendix). But it is only where
there is an analogue of the notion of an integral number (which then yields
the hypernaturals as the positive integral numbers) that infinitesimal prob-
abilities in a fair lottery make plausible sense, since we would expect the
probability of an outcome of a fair lottery on a set Ω to be the reciprocal of
some sort of a count of the number of elements of Ω, and a count should be
in an appropriate sense an integral number.

4. Final remarks

We have seen that infinitesimals in a totally ordered field extension of the
reals are too small to be the probabilities of a particular ticket in a countably
infinite fair lottery winning.

An anonymous reader has suggested that the arguments also show that
zero is also too small to be the probability of a particular ticket winning.
If so, then we now have an argument that no probability can be assigned
to an individual outcome of a countably infinite lottery. For zero and an
infinitesimal are too small, while every positive real is too big as we saw by
finite additivity at the beginning of the paper. The reader is right in the
case of our first argument: 0 is indeed infinitely smaller than every outcome
probability of the uncontroversial lottery with P ({n}) = 2−n, and so for the
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same reason that an infinitesimal is too small an outcome probability for the
fair lottery, so is zero. But it is not clear that the second argument can be
extended to show that zero is too small. For our second argument assumes
that infinitesimals are the right probabilities to assign in infinite lotteries,
and concludes given this that the lottery on [M ] should have individual
outcome 1/M . But someone holding out for a zero-probability answer might
just say that the individual outcome probability for any infinite fair lottery,
including one on [M ], should be zero.4

Appendix: The uncountability of [M ]

One of our arguments used the fact that [M ], i.e., the set of hypernaturals
less than or equal to M , is an uncountable set when M is infinite. This
follows from standard facts about hyperreals (e.g., Lemma 11.2.2 of Corbae,
et al., 2009), but it is worth giving a simple proof that works not just in
the case of the hyperreals, but for any extension of the reals that has an
analogue of the hyperintegers.

Let F be any totally ordered field containing the real numbers as an
ordered subfield. Say that a subset Z of F is a set of F -integers provided
that (a) 0 ∈ Z and (b) for every positive x ∈ F , there is a unique n ∈ Z
such that n ≤ x < n + 1. This unique n is called the integer part of x
(see Mourges and Ressayre, 1993), and we will write n = bxcZ . Write
[M ]Z = {n ∈ Z : 0 < n ≤ M}. Say that M ∈ F is infinite provided that
x < |M | for all real x (thus, M is infinite if and only if 1/M is infinitesimal).

Theorem. If M ∈ F is infinite and positive, then [M ]Z has at least the
cardinality of the continuum, and in particular is uncountable.

Proof. Write (0, 1) for the interval of all real numbers strictly between 0
and 1. Let A = {bxMcZ : x ∈ (0, 1)}. Observe that (0, 1) and A have
the same cardinality. For let f(x) = bxMcZ . This is a function from (0, 1)
onto all of A. To get that (0, 1) and A have the same cardinality, we need
only prove that f is one-to-one. To do this, suppose f(x) = f(y) for x
and y in (0, 1). Then bxMcZ = byMcZ and there is an n ∈ Z such that
n ≤ xM < n + 1 and n ≤ yM < n + 1. It follows that |xM − yM | < 1.
Thus, |x − y|M < 1 as M is positive, and so |x − y| < 1/M . But if M is
infinite, then 1/M is infinitesimal, and the non-negative real number |x− y|
is less than that infinitesimal. But the only non-negative real number less
than an infinitesimal is zero, so |x − y| = 0 and hence x = y. Thus, f is
one-to-one and onto, and so A has the same cardinality as (0, 1), i.e., the
cardinality of the continuum.

But A is a subset of [M ]Z as is easy to check (every member of A is a non-
negative member of Z and less than M ; also, 0 /∈ A since M ’s being infinite
guarantees that xM is infinite for all x ∈ (0, 1), and hence that bxMcZ is

4The author is grateful to three anonymous readers for comments that have improved
this paper.



INFINITESIMALS ARE TOO SMALL 7

also infinite for all x ∈ (0, 1)). Hence, [M ]Z has at least the cardinality of
the continuum, and in particular is uncountable. �
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