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Abstract. It is often loosely said that Ramsey (1931) and de Finetti
(1937) proved that if your credences are inconsistent, then you will be
willing to accept a Dutch Book, a wager portfolio that is sure to re-
sult in a loss. Of course, their theorems are true, but the claim about
acceptance of Dutch Books assumes a particular method of calculating
expected utilities given the inconsistent credences. I will argue that there
are better ways of calculating expected utilities given a potentially in-
consistent credence assignment, and that for a large class of credences—
a class that includes many inconsistent examples—these ways are im-
mune to Dutch Books and single-shot domination failures. The crucial
move is to replace Finite Additivity with Monotonicity (if A ⊆ B, then
P (A) ≤ P (B)) and then calculate expected utilities for positive U via
the formula

∫∞
0
P (U > y) dy. This shows that Dutch Book arguments

for probabilism, the thesis that one’s credences should be consistent,
do not establish their conclusion. Finally, I will consider a modified
argument based on multi-step domination failure that does better, but
nonetheless is not as compelling as the Dutch Book arguments appeared
to be.

1. Introduction

The following is accepted wisdom: If your credence assignments do not
satisfy the axioms of finitely-additive probability, then you will be subject
to a Dutch Book, i.e., a bookie can offer you a deal such that (a) you are
rationally permitted (or even required, on some versions) to accept the deal,
but (b) no matter what happens, you are guaranteed to lose overall (Ramsey
1931; de Finetti 1937). This fact is supposed to, either pragmatically (see
the literature in Hájek 2008, Section 2.1) or by vividly demonstrating a non-
pragmatic inconsistency (e.g., Howson and Urbach 1993), show that your
credences should be consistent in the sense of satisfying the axioms.

But whether this line of thought works depends on how you decide using
your inconsistent credence assignments. For instance, here is one way to
decide with inconsistent credence assignments: maximize the mathematical
expectation of the utility function with respect to the consistent probability
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function closest (in some metric, and with some tie-breaking procedure) to
your credence assignment. Then, since consistent credences are not subject
to Dutch Books (Kemeny 1955; Lehman 1955; Hájek 2008), you won’t be
subject to them either. So, even if your credences are inconsistent, you need
not be subject to Dutch Books.

There are two problems with this response to the accepted wisdom. First,
one might have a pragmatic approach to credences on which credences are
defined by propensities for decision-making. On such a view, in the above
example, you are deciding just like you would if you had that closest consis-
tent assignment instead of your inconsistent one, and hence that consistent
assignment is your credence assignment. I think such pragmatic approaches
are mistaken in general, but my disagreement with them will go beyond the
scope of this paper.

But there is a second more serious problem with the above example of how
to decide with inconsistent credences. For a typical metric (e.g., Euclidean
distance or maximum deviation) there will be infinitely many inconsistent
credences with the same closest consistent assignment, and hence it is im-
plausible to say that the procedure reflects a reasonable take on “deciding
with inconsistent credence P”. What we want is a procedure that is more
sensitive to the details of the credence assignments. But at the same time,
the procedure has to be in some intuitive sense natural.1

Promisingly, Hedden (2013) has recently shown that there is a decision
procedure for binary decisions that in some cases of inconsistent credences
provably escapes Dutch Books. However, Pettigrew (2019) has also shown
that the natural extension of Hedden’s decision procedure to more complex
choices will require one to choose a dominated wager over a dominating one,
unless one’s credences are a scaled version of consistent credences.

I will show that there are two fairly natural procedures for deciding with
inconsistent credences that, for certain classes of inconsistent credences, are
not subject to Dutch Books. Moreover, these procedures will be quite sensi-
tive to the details of the inconsistent credences. This will show the failure of
Dutch Book arguments for probabilism (the thesis that our credences should
satisfy the axioms of probability) on the basis of Dutch Books. I will also
show that the procedures never lead to one’s choosing a dominated wager
over the dominating wager, and discuss continuity properties.

Next, I will move on to consider a different kind of argument, based on
avoiding dominated outcomes in sequences of wagers, an argument close to
one from Pettigrew’s (2019) concept of “finite exploitability”. We will see

1On any finite sample space Ω, the set A of all possible credence functions, i.e., as-
signments of probabilities to all the subsets of Ω, and the set C of all consistent credence
functions have the cardinality of the continuum. Thus, there is a bijection φ between A
and C. We could fix such a bijection φ, and then make decisions with a credence function
P by maximizing mathematical expectation with respect to φ(P ). Here we have maximal
sensitivity to the details of P : no two credence functions will result in the same decision
dispositions. But this is a very unnatural decision-making procedure.
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that the two decision procedures do suffer a failure here, but I will argue
that it is not clear that this is as intuitively as serious a problem as being
subject to a Dutch Book.

Finally, I will argue that Pettigrew’s (2019) extension of Hedden’s (2013)
prevision fails an intuitive continuity property for inconsistent credences and
there is thus independent reason to reject it.

2. Stage-setting

2.1. Credence assignments. Events can be thought of as members of an
algebra F of subsets of a sample space Ω (i.e., F is a non-empty collection of
subsets of Ω closed under complements and finite unions). If F is a σ-algebra
(i.e., it is also closed under countable unions), then a probability function is
an assignment P of numbers to events that satisfies the Kolmogorov axioms:

(1) Non-negativity: P (A) ≥ 0

(2) Normalization: P (Ω) = 1

(3) Countable Additivity: P (A1 ∪ A2 ∪ . . . ) = P (A1) + P (A2) + · · · if
the Ai are pairwise disjoint (Ai ∩Aj = ∅ whenever i 6= j).

In the simpler case where F is finite, Countable Additivity is equivalent to:

(4) Finite Additivity: P (A ∪B) = P (A) + P (B) whenever A ∩B = ∅.

I will say that an assignment P of numbers to members of some algebra of
subsets is consistent or a finitely additive probability provided that it satisfies
Non-negativity, Normalization and Finite Additivity.

Some other axioms follow from Non-negativity and Finite Additivity, but
will be of independent interest:

(5) Zero: P (∅) = 0

(6) Monotonicity: P (A) ≤ P (B) whenever A ⊆ B
(7) Binary Non-Disappearance: If P (A) = 0 and P (B) = 0 and A and

B are disjoint, then A ∪B 6= Ω.

For the sake of mathematical simplicity, we are considering probabilities
to be defined on subsets of a sample space rather than for sentences or
propositions. This procedure by itself enforces a certain degree of consis-
tency: logically equivalent propositions must receive the same probability.
Since it is not the purpose of this paper to provide a reasonable decision
procedure for all inconsistent credence assignments, but only to show that
one exists for some, this will not be a problem.

2.2. Wagers, utility functions and previsions. A credence space will
be a pair 〈Ω,F〉 of a set Ω and an algebra F of subsets or events. For
convenience, I will often refer to the space as just Ω. Let a wager W be
a finite sequence of pairs 〈〈F1, u1〉, . . . , 〈Fn, un〉〉 where Fi is an event on a
credence space Ω and ui is the utility of that event eventuating. Thus, e.g.,
if Ω represents the toss of a coin, the wager

W = 〈〈Ω,−$26〉, 〈{heads}, $100〉〉
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represents a case where you pay $26 no matter what, and receive $100 on
heads.

For any wager W = 〈〈F1, u1〉, . . . , 〈Fn, un〉〉, there is an associated utility
function UW defined on Ω by:

UW =
n∑
i=1

ui · 1Fi ,

where 1A is the indicator function of A, i.e., the function whose value is 1
on A and 0 everywhere else.

A simple function on a credence space 〈Ω,F〉 is a function U from Ω to
the reals that takes on only finitely many values and that has the property
that for each real y, the set {ω ∈ Ω : U(ω) = y} of all the points where U
has the value y is an event (i.e., is in F).

The utility function associated with a wager is a simple function, and I
will assume that all utility functions are simple. Conversely, every simple
function f is associated with a canonical wager Wf = 〈〈F1, y1〉, . . . , 〈Fn, yn〉〉
where y1 < · · · < yn are the values of U and Fi is the set of all points of Ω
where U has the value yi. It is easy to check that UWf

= f for any simple
function f , but the converse is false, since multiple wagers can share the
same utility function (e.g., 〈〈A, 1〉, 〈B, 1〉〉 has the same utility function as
〈〈A ∪B, 1〉〉 if A and B are disjoint).

A wager W2 dominates a wager W1 provided that UW2 > UW1 everywhere
on Ω.

A prevision on the set of all wagers or on the set of all simple functions
on a credence space Ω is a function E from wagers or simple functions to
real numbers, intended to represent the expected utility of a wager.

We can get a prevision E∗ on the space of all wagers derivatively from a
prevision E on the space of simple functions with the rule E∗W = EUW ,
and, conversely, given a prevision E on the space of wagers, one can use
E†f = EWf to define a prevision on the space of simple functions. When no
ambiguity results, in the case of previsions on wagers derived from previsions
on functions, I will drop the asterisk.

I will say that two wagers, W and W ′, are equivalent provided that they
define the same utility function, i.e., UW = UW ′ . A prevision on the space of
wagers is integral-like if and only if it assigns the same values to equivalent
wagers. Any prevision derived as above from a prevision on the space of
simple functions is integral-like and, conversely, if a prevision E on the
space of wagers is integral-like, then it is easily checked that E = (E†)∗ and
hence E is derived from the prevision E† on the space of simple-functions.

Classically, the prevision mathematicians and decision theorists have been
most interested in was the mathematical expectation with respect to a con-
sistent credence assignment. This is a prevision on the simple functions and
from which we can derive an integral-like prevision on the space of wagers.
But our main interest in this paper is in other previsions, ones that can be
naturally defined in terms of an inconsistent credence assignment.
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I will say that a prevision E on the space of wagers satisfies the Zero
Condition provided that EW = 0 when W is the empty wager 〈〉, and a
prevision E on the space of simple functions satisfies the Zero Condition
provided that EU = 0 if U is a function that is equal to zero everywhere on
Ω. All the previsions we will be interested in will satisfy the Zero Condition,
at least as long as they are defined using credences P that satisfy the Zero
Axiom for credences, i.e., P (∅) = 0.

2.3. Single-shot decisions using previsions. Suppose I have a prevision
E on the space of wagers satisfying the Zero Condition and a wager W is
offered to me. There is a natural decision theory associated with E: I am
required to accept W if and only if EW > 0 and permitted if and only if
EW ≥ 0.

This nicely generalizes to cases of a choice between multiple wagers. If
I am choosing between finitely many wagers, then on the natural decision
theory associated with E, I am required to choose some wager with maximal
prevision, and permitted to choose any such wager. The binary case where I
just choose whether to accept or reject a wager is a special case of this if we
take, as we shall, a choice to accept or reject a wager W to be equivalent to
a choice between W and the empty wager 〈〉, assuming the Zero Condition
which ensures that E〈〉 = 0.

A prevision E on the space of wagers is subject to a weak (respectively,
strong) single-shot Dutch Book provided that there is a wager W such that
the associated utility function UW is strictly negative everywhere on Ω and
yet it is E-permissible (E-required) that I accept W , i.e., EW ≥ 0 (EW >
0).

Our treatment of betting on wagers involves a slightly different setting
from the traditional one in the literature beginning with de Finetti (1937).
In the literature, the question isn’t just whether to accept or reject a wager
simply, but whether to accept or reject a wager at a specific price. But
we can model the question of whether to accept a wager W at a price r in
our setting simply by asking whether the agent should simply accept the
modified wager

Wr = 〈〈F1, u1〉, . . . , 〈Fn, un〉, 〈Ω,−r〉〉

(where W = 〈〈〈F1, u1〉, . . . , 〈Fn, un〉〉). There are reasons to prefer the set-
ting of this paper. The paying of the price r is a part of what the agent is
agreeing to, and hence it should simply be treated as yet another part of
the wager, albeit one that is certain (i.e., occurs on the certain event Ω).
Moreover, let us imagine that a coin is flipped, and you’re an agent who
assigns credence 1/4 to heads, credence 1/4 to tails, and credence 1/2 for
the whole probability space. Suppose that for $10 you are offered a wager
that pays $24 on heads. The traditional approach will have you computing
the value of the $24-on-heads as (1/4)$24 = $6 (and all the previsions we
will consider will agree in this computation), and hence rejecting buying the
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wager for $10. That makes sense if you were to consider the probability of
the $10 payment to be one, but you don’t: you think the probability of that
payment is 1/2, since that’s the probability of the whole space. So, rather
than comparing the $6 to $10, you would be more reasonable to compare it
to (1/2) · $10 = $5, and hence accept the wager. And that acceptance is,
indeed, the more reasonable thing to do.

In any case, for the previsions we will consider in this paper, our approach
is equivalent to the traditional one in the special case where P satisfies
Normalization, i.e., P (Ω) = 1. The assumption of Normalization is largely
a conventional one, since as long as P (Ω) 6= 0 we can just normalize P by
dividing it by P (Ω), and so nothing of much philosophical interest is lost
by making the assumption as needed, except for the special case where the
agent is so inconsistent as to assign credence 0 to Ω, a special case we won’t
need to consider since our purpose is to provide a decision procedure that
works for some, but not all, inconsistent agents.

Next, let us say that the prevision E is subject to a weak (respectively,
strong) single-shot failure of domination provided there are wagers W1 and
W2 such that W2 dominates W1 and yet E permits (requires) one to choose
W1 over W2.

Note that if E satisfies the Zero Condition, then subjection to weak or
strong single-shot Dutch Books entails the corresponding failure of single-
shot domination. For if W is a Dutch Book (either weak or strong), then
W is dominated by 〈〉.

A prevision is weakly (strongly) monotonic provided that it satisfies Zero
and does not suffer from single-shot strong (weak) failure of domination,
i.e., E〈〉 = 0 and if W2 dominates W1 then EW2 ≥ EW1 (EW2 > EW1).
Classical mathematical expectation with respect to a consistent probability
assignment is strongly monotonic.

2.4. Multi-shot decisions using previsions. Suppose that instead of be-
ing offered a single wager, I am offered multiple wagers in a fixed finite se-
quence, with me being able to accept or reject each one as it comes, and
with the wagers all becoming resolved at the end of the sequence. There
is then a natural decision theory given a prevision E: I am required to ac-
cept all wagers with positive E-value and permitted to accept all with a
non-negative E-value.

However, this natural decision theory for multi-shot decisions is not the
only one. For it might be that whether I accept a given wager is affected by
what wagers I have already accepted. After all, if I have already accepted a
wager W1, which has yet to be resolved, and now am being asked whether to
accept a wager W2, then I am not really choosing between W2 and nothing
(i.e., 〈〉). Rather, I am choosing between W1 + W2 and W1, where “+” is
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concatenation of wagers:

〈〈F1, u1〉, ..., 〈Fn, un〉〉+ 〈〈F ′1, u′1〉, ..., 〈F ′n′ , u′n′〉〉
= 〈〈F1, u1〉, ..., 〈Fn, un〉, 〈F ′1, u′1〉, ..., 〈F ′n′ , u′n′〉〉.

This suggests that intuitively a better decision theory would be one on which
I take into account the already-accepted wagers, so that if I’ve already ac-
cepted Wi1 , ...,Wij , then I am permitted to accept a new wager Wk when

E(Wi1 + · · ·+Wij ) ≤ E(Wi1 + · · ·+Wij +Wk)

and required to do so when this inequality is strict.
I will call the simpler decision theory, where I ignore previously accepted

wagers, the independent decision theory, and the theory that compares con-
catenations of wagers the cumulative decision theory.

In the case of the classical mathematical expectation prevision with re-
spect to consistent probabilities, the independent and cumulative theories
are equivalent, since classical expectation not only satisfies Zero but is ad-
ditive in the sense that E(W1 +W2) = EW1 +EW2 for any wagers W1 and
W2, so that

E(Wi1 + · · ·+Wij ) ≤ E(Wi1 + · · ·+Wij +Wk)

if and only if 0 ≤ EWk, and similarly for strict inequalities.
We can extend the two theories to multi-shot choices between multiple

wagers. Specifically, if at a given step one is offered a choice of a wager
from some finite set, then the independent decision theory for a prevision E
says one is permitted to accept any wager with maximal E-value, and one
is required to only accept such a wager. The cumulative decision procedure
says that one is permitted to accept any wager W such that E(Wi1 + · · ·+
Wij + W ) is maximal, and required to only accept such a wager, where
Wi1 , ...,Wij are the already accepted wagers.

Now, we say that a prevision E with a multi-shot decision theory T is
subject to a weak (strong) multi-shot Dutch Book provided there is a fixed
sequence of wagers W1, ...,Wn that one is permitted (required) by T to take
all of in sequence and yet that is such that W1 + · · ·+Wn is dominated by
〈〉.

The following result will be quite useful:

Proposition 1. If a prevision E is subject to a multi-shot weak or strong
Dutch Book with respect to the cumulative decision theory, then it is respec-
tively subject to a single-shot weak or strong Dutch Book.

Proof. Suppose E is subject to the multi-shot weak (strong) Dutch Book
W1, ...,Wn on cumulative decision theory. Then the utility function asso-
ciated with W = W1 + · · · + Wn is strictly negative. But EW is non-
negative (positive) or else the agent wouldn’t have been permitted (required)
to choose Wn after having chosen W1 + · · · + Wn−1 on cumulative decision
theory, and hence W is a single-shot weak (strong) Dutch Book. �
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Given Zero, being subject to weak (strong) single-shot Dutch Book W
implies weak (strong) single-shot domination failure (with respect to the
choice between W and 〈〉).

Corollary 1. A strongly monotonic prevision E that satisfies Zero is not
subject to weak single- or multi-shot Dutch Books given cumulative decision
theory.

Thus, to escape Dutch Books and single-shot domination failures, we
simply need to have a strongly monotonic prevision. After a digression con-
cerning the De Finetti prevision, I will give two previsions that are strongly
monotonic for credence functions that satisfy Zero, Non-negativity, Mono-
tonicity, and for one of them, Binary Non-Disappearance.

3. The De Finetti Prevision

The classical Dutch Book results that are used to support probabilism
assume the following De Finetti prevision on the space of wagers:

DeFinettiP 〈〈F1, u1〉, ..., 〈Fn, un〉〉 =

n∑
i=1

uiP (Fi).

If P fails Non-negativity or Finite Additivity, decisions based on maximizing
DeFinettiP will be subject to one-shot weak Dutch Books.

To see this, observe first that if P (Ω) ≤ 0, then 〈〈Ω,−1〉〉 has a De Finetti
prevision of −P (Ω) ≥ 0, and yet is a sure loss. Next, if P (Ω) > 0, then we
can assume without loss of generality that P satisfies Normalization, simply
by replacing P with P ′(A) = P (A)/P (Ω), as that will simply rescale the
De Finetti previsions by a positive factor and hence not change whether
they are zero, positive or negative, and thus will not change what wagers
are permissibly accepted. But if we have Normalization, then as noted
in Section 2.3 our setting does not differ from the traditional setting of
de Finetti (1937), and we can use de Finetti’s result to see that if we lack
Non-negativity or Finite Additivity, then there is a weak Dutch Book.

Given a probability function P , the prevision DeFinettiP on the space
of wagers is equivalent to mathematical expectation on the space of simple
functions. Thus, in that case DeFinettiP is integral-like.2 But if P is not
finitely additive, then DeFinettiP is not integral-like. To see this, note that
if P (A) + P (B) 6= P (A ∪B) but A and B are disjoint, then the wagers

W1 = 〈〈1, A〉, 〈1, B〉〉
and

W2 = 〈〈1, A ∪B〉〉
2This is also true if P is consistent but not countably additive, but requires a slightly

more complicated argument. Suppose UW1 = UW2 . Let F ′ be the finite algebra generated
by the events entering into W1 and W2. Then since P is finitely additive and F ′ is finite,
P will be countably additive on F ′. Hence, DeFinettiP will be integral-like with respect
to wagers defined with respect to F ′, and in particular DeFinettiP W1 = DeFinettiP W2.
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have the same utility function, namely 1A∪B, but different De Finetti pre-
visions, namely P (A) + P (B) and P (A ∪B), respectively.

Thus, in addition to having Dutch Book failures in all cases without Finite
Additivity, in those cases the De Finetti prevision also has the unfortunate
property of assigning different previsions to equivalent wagers. It would be
obvious even to many agents employing inconsistent probabilities that in the
above example W1 and W2 are the same wager described differently, and so
we should not base our arguments for consistency on imputing a strategy to
these agents based on a prevision that evaluates W1 and W2 differently. In
the next section, I will thus consider two different previsions, which will be
integral-like because unlike the De Finnetti prevision they will be derived
from a prevision on the space of utility functions.

4. Level Set Integrals

4.1. Definitions. Let U be any non-negative measurable function on a
space Ω with a countably additive probability measure P . The following
is a standard consequence of the Fubini-Tonelli Theorem and is much use in
probability theory and analysis:

(1)

∫
Ω
U dP =

∫ ∞
0

P (U > y) dy,

where the left-hand-side is the Lebesgue integral of U—which defines the
mathematical expectation of U with respect to P—while the integrals on
the right hand side are improper Lebesgue or Riemann integrals (it does not
matter which), and where P (U > y) is short for P ({ω ∈ Ω : U(ω) > y}),
the probability of the event of U being bigger than y.3

Indeed, sometimes (1) is even used to define the Lebesgue integral with
respect to P (in this case, the right-hand-side is interpreted as a Riemann
integral; see Lieb and Loss 2001, p. 14), which supports the mathematical
naturalness of (1).

The intuition behind (1) is that we can think of the Lebesgue integral∫
Ω U dP as the area under the graph U (where the x-axis represents Ω

equipped with the measure P ). We can compute this area by slicing the
graph into thin horizontal slices and adding up the lengths of these slices
multiplied by their thickness. Roughly speaking, the slice at height y above
the x-axis has length P (U > y). The sum of the areas of such slices is the
integral

∫∞
0 P (U > y) dy if U is a measurable function.

Note that while the Lebesgue integral
∫

Ω U dP is only defined for a count-

ably additive measure P , the improper integral
∫∞

0 P (U > y) dy can in prin-
ciple make sense for an inconsistent credence assignment P . In particular,

3Sketch of proof: Define the function φ(ω, y) on Ω × [0,∞) as equal to 1 if U(ω) > y
and 0 otherwise. One can prove that φ is measurable (Lieb and Loss 2001, p. 14). Thus,
by Fubini-Tonelli

∫
Ω

∫∞
0
φ(ω, y) dy dP (ω) =

∫∞
0

∫
Ω
φ(ω, y) dP (ω) dy. But

∫∞
0
φ(ω, y) dy =

U(ω) (since φ(ω, y) = 1 if y ≤ U(ω) and is zero otherwise) and
∫

Ω
φ(ω, y) dP (ω) = P (U >

y).
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if P satisfies Zero, then the improper integral makes sense for any simple
function U (since the function y 7→ P (U > y) will have at most finitely
many discontinuities, corresponding to the finitely many values of U , and
will be zero if y is large enough).

I will call
∫∞

0 P (U > y) dy the Level Set Integral LSIP U of the non-
negative function U with respect to P when it is defined. If all the utility
functions we were interested in were non-negative, we could take the Level
Set Integral to be our prevision of choice. However, that would not be very
useful, since for Dutch Books to be an issue we need to deal with utility
functions that take on some negative values.

There are two mathematical ways of extending our definition of a Level
Set Integral to all simple functions U . We can split the utility function U
into positive and negative parts U+ and U−, where U±(ω) = |U(ω)| when
±U(ω) ≥ 0 and U±(ω) = 0 otherwise, and then define the Split Level Set
Integral :

LSI±P U = LSIP U
+ − LSIP U

− =

∫ ∞
0

P (U > y) dy −
∫ ∞

0
P (U < −y) dy.

Alternately, we can shift U upwards to make it non-negative, compute
the Level Set Integral, and then readjust it back down. More precisely, we
choose a real number M such that M + U is non-negative and then define
the Shifted Level Set Integral :

LSI↑P U = (LSIP (M + U))−M.

As long as P satisfies Normalization, the definition of the Shifted Level Set
Integral does not depend on the particular choice of the shift M . For suppose
that U is non-negative. Then for any non-negative m we have:

LSIP (m+ U) =

∫ ∞
0

P (m+ U > y) dy

=

∫ ∞
0

P (U > y −m) dy

=

∫ ∞
−m

P (U > y) dy

=

∫ 0

−m
P (U > y) dy +

∫ ∞
0

P (U > y) dy

= mP (Ω) + LSIP U = m+ LSIP U

since P (U > y) = P (Ω) for y < 0 as U is non-negative. It follows that if
M + U and M ′ + U are both non-negative, with M ′ ≥ M , then we can let
m = M ′ −M and then:

LSIP (M ′ + U)−M ′ = LSIP (m+M + U)−M ′

= LSIP (M + U) +m−M ′ = LSIP (M + U)−M,
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so that it doesn’t matter whether the Shifted Level Set Integral is defined
with a shift of M or a shift of M ′.

We can then extend the Split and Shifted Level Set Integrals to wagers

by specifying that LSI±P W = LSI±P UW and LSI↑P W = LSI↑P UW for a wager
W .

In the case of consistent credences, the Split and Shifted Level Set Inte-
grals will be equal, but we cannot expect equality in the general case. The
following are some useful facts whose simple proofs are left as an exercise to
the reader:

Lemma 1. Suppose that P satisfies Zero and Normalization. Then:

(a) LSI±P U and LSI↑P U are defined and finite for any simple function U

(b) LSI±P U = LSI↑P U = c if U is a constant function equal to c every-
where

(c) LSI↑P (c+ U) = c+ LSI↑P U for any simple function U and real c

(d) LSI↑P cU = cLSI↑P U for any non-negative constant c

(e) LSI±P cU = cLSI±P U for any real constant c

(f) If U ≥ 0 everywhere, then LSIP U = LSI±P U = LSI↑P U

(g) If U ≤ 0 everywhere, then −LSIP (−U) = LSI±P U = LSI↑P U
(h) For any event A, LSIP 1A = P (A).

In particular, the Shifted Level Set Integral behaves well under positive
affine transformations x 7→ a+ bx for b > 0. We include the Split Level Set
Integral in our discussions, however, because it is usual for mathematicians
to define Lebesgue integrals by first defining them for the positive case and
then splitting, and hence the Split Level Set Integral may seem more math-
ematically natural. The Split Level Set Integral has the property that it
behaves well under mirroring, namely LSI±P −U = −LSIP U , but mirroring
is not a very natural transformation when considering utilities, except in the
context of zero-sum games.

4.2. Dutch Books.

Theorem 1. Suppose that P satisfies Zero, Non-negativity and Normal-

ization. Then neither LSI±P nor LSI↑P is subject to single-shot weak Dutch
Books, or to multi-shot weak Dutch Books given cumulative decision theory.

Proof. We omit the subscript P when no confusion will result. Suppose
U is a utility function that is strictly negative everywhere. By Lemma 1,
LSI↑ U = LSI± U = −LSI(−U). Note that −U > 0 everywhere. I now
claim that if f is strictly positive everywhere, then LSI f > 0. It will follow
that LSI↑ U = LSI± U < 0 and hence we do not have a weak Dutch Book, as
both previsions will require one not to choose the wager with utility function
U .
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To see that LSI f > 0, let c be the smallest of the values of our strictly
positive function f . Then c > 0 and:

LSI f =

∫ ∞
0

P (f > y) dy ≥
∫ c

0
P (f > y) dy =

∫ c

0
1 dy = c,

where the first inequality follows from Non-negativity and the last equality
from Normalization and the fact that {ω : f(ω) > y} = Ω if y < c. The
claim about multi-shot Dutch Books follows from Proposition 1. �

We thus see that, given Zero, Non-negativity and Normalization, our
level-set previsions allow us to escape Dutch Books.

4.3. Single-Shot Domination Failure. If E assigns a real number to ev-
ery non-negative simple function, then we will say that E is weakly (strongly)
monotonic on non-negative functions provided that if 0 ≤ f < g everywhere,
then Ef ≤ Eg (Ef < Eg). Being weakly (strongly) monotonic simply
comes to not suffering from single-shot strong (weak) domination failure for
non-negative utilities.

Here is a useful fact:

Theorem 2. Suppose that P satisfies Zero, Non-negativity and Normaliza-
tion. Then the following conditions are equivalent:

(a) LSIP is strongly monotonic on non-negative functions
(b) LSIP is weakly monotonic on non-negative functions
(c) if 0 ≤ f ≤ g everywhere, then LSIP f ≤ LSIP g

(d) if f ≤ g everywhere, then LSI↑P f ≤ LSI↑P g

(e) LSI↑P is strongly monotonic

(f) LSI↑P is weakly monotonic

(g) LSI±P is weakly monotonic
(h) P satisfies Monotonicity

Additionally, the following are equivalent:

(i) LSI±P is strongly monotonic
(j) P satisfies Monotonicity and Binary Non-Disappearance.

The proof is given in the Appendix.

Corollary 2. If P satisfies Zero, Non-negativity, Normalization and Mono-

tonicity, then cumulative decision theory based on the prevision LSI↑P is not

subject to single-shot weak domination failure. The same is true for LSI±P if
we additionally assume that P satisfies Binary Non-Disappearance.

Finally, note that the conjunction of Zero, Non-negativity, Normaliza-
tion, Monotonicity and Binary Non-Disappearance is strictly weaker than
consistency. One way to see this is to note that if P is any consistent cre-
dence satisfying the non-triviality condition that there is an event A such
that 0 < P (A) < 1, and for α a positive number other than one we define
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Pα(B) = (P (B))α, then Pα(A) + Pα(Ω − A) 6= 1,4 so Pα is not additive.
But Pα clearly satisfies Zero, Non-negativity, Normalization, Monotonic-
ity and Binary Non-Disappearance. More generally given a consistent cre-
dence P , and any monotonic function φ : [0, 1] → [0, 1] such that φ(0) = 0,
φ(1) = 1 and 0 < φ(x) for all x, the credence function φ ◦ P (defined by
(φ ◦ P )(B) = φ(P (B))) satisfies Zero, Non-negativity, Normalization and
Binary Non-Disappearance.

4.4. Continuity. Continuity will be the very plausible property of a previ-
sion E that tells us that wagers that are “close” to each other have prevision
values that are close. More precisely, it will say that for every simple func-
tion f and any ε > 0, there is a δ > 0 such that whenever g is a simple
function such that |f − g| < δ everywhere, then |Ef − Eg| ≤ ε.

Technically, this means that E is a continuous function on the space of
simple functions with the maximum-difference metric d(f, g) = maxω |f(ω)−
g(ω)|.

Proposition 2. If P satisfies Zero, Non-negativity, Normalization and

Monotonicity, then LSI↑P and LSI±P are continuous.

The proof is given in the Appendix.

4.5. Sensitivity to details and Independence. Observe that the deci-

sion theories based on the previsions LSI↑P and LSI±P are sensitive to all the
details of P , given Zero and Normalization. For we recover the probability
of an event E from binary decisions recommended by LSIP (for wagers with
non-negative utility functions) as follows. Given that LSIP 1A = P (A) and
LSIP (c ·1Ω) = c (see Lemma 1), we are required to choose the wager 〈〈Ω, c〉〉
over the wager 〈〈A, 1〉〉 if and only if c > P (A), so the value of P (A) can be
read off from the pattern of decision-theoretic requirements based on LSIP .
Hence, no details of the credences are lost in using LSIP as the prevision,
and we have:

Proposition 3. If P and P ′ both satisfy Zero and Normalization, and LSIP
and LSIP ′ impose the same single-shot decision-theoretic requirements for
decisions involving non-negative utility functions, then P = P ′.

Proposition 3 has the following consequence. If P ′ is consistent and P is
not consistent, then LSIP ′ and LSIP impose different single-shot decision-
theoretic requirements on non-negative utility functions. But LSIP ′ for con-
sistent P ′ is the same as the classical expected utility EP ′ . Thus:

Corollary 3. If P satisfies Zero and Normalization, but is not consistent,
then there is no consistent P ′ such that LSIP imposes the same single-shot
decision-theoretic requirements for decisions involving non-negative simple
functions as EP ′ does.

4If α < 1, then Pα(A) + Pα(Ω − A) > P (A) + P (Ω − A) = 1 and if α > 1, then the
inequality reverses.



14 ALEXANDER R. PRUSS

And note that Shifted and Split Level Set Integrals are the same as Level
Set Integrals for non-negative simple functions. Thus, in using either sort
of Level Set Integrals, we aren’t simply cheating and in effect replacing an
inconsistent credence with a consistent one. We really have a fairly natural
decision that is sensitive to the details of the inconsistent credences.

It follows that decision theory based on LSI±P or LSI↑P , for inconsistent P
satisfying Zero and Normalization, must reject one or more of the axioms of
the von Neumann-Morgenstern (1953) Representation Theorem.

Which axiom or axioms? Well, it is trivial to see that Completeness
(either f is at least as good as g or vice versa or both) and Transitivity (if
h is better than g and g is better than f , then h is better than f) hold.

If we further assume Monotonicity of P , then we have Continuity. For
Continuity requires that if EP f < EP g < EPh for simple f , g and h, then
there is a number 0 ≤ p ≤ 1 such that EP (pf + (1 − p)h) = EP g. To see
that this is true, let φ(p) = EP (pf + (1 − p)h). Given that f and h are
simple and hence bounded, p 7→ pf + (1− p)h is a continuous function from
the interval [0, 1] to the metric space of utility functions with the maximum-
distance norm. Since EP is a continuous function on that metric space by
Proposition 2 given Monotonicity (which with Zero implies Non-negativity),
it follows that φ is continuous. Since φ(0) = EP f and φ(1) = EPh and EP g
lies between these two values, then by the Intermediate Value Theorem,
there is a 0 ≤ p ≤ 1 such that φ(p) = EP g, which implies von Neumann-
Morgenstern’s Axiom of Continuity.

By the Representation Theorem, it follows that the remaining axiom,
namely Independence, must be violated when we have Monotonicity but
lack Finite Additivity. The Independence Axiom says that for any simple
f , g and h and any 0 < p ≤ 1, the utility f is at least as choiceworthy as g
if and only if pf + (1− p)h is at least as choiceworthy as pg + (1− p)h. In
other words, we have shown:

Proposition 4. If P satisfies Zero and Normalization, then the von
Neumann-Morgenstern Axioms of Completeness and Transitivity hold for
LSI±P and LSI↑. If P further satisfies Monotonicity, then LSI±P and LSI↑

satisfy Continuity, and if, even further, P does not satisfy Finite Additivity,
then LSI±P and LSI↑ do not satisfy Independence.

4.6. Multi-Shot Domination Failure. Matters are more complicated for
multi-shot domination for individual or cumulative decision theory. First,
let’s define some terms. Suppose that there is a fixed sequence of choices
that you are being offered, each choice being to select one of a non-empty
finite set of wagers, with the set of wagers available at step n not being
dependent on what one chose earlier (but perhaps different from the sets
of wagers available at other steps). Then under individual decision theory
corresponding to a prevision E, at each step you are permitted to choose any
wager that maximizes the E-prevision of the wager from among all the ones
available at that step, and required to choose some such maximizing wager.
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Under cumulative decision theory, at each step n instead of maximizing the
prevision of the wagers available at that step, you maximize Un−1 + UW
where Un−1 is the sum of the utility functions of the wagers accepted at
previous steps and W ranges over the wagers available at the current step.

It would be very nice to have the following property for cumulative de-
cision theory: given a fixed sequence of choices, you are never permitted
to select a finite sequence of wagers that turns out to be dominated by
some other finite sequence of wagers you could have chosen. (This property
is a stronger version of the negation of what Pettigrew 2019 calls “finite
exploitability”.)

Unfortunately, our Level Set previsions do not have this property. In
fact, we have a general theorem on which any individual or cumulative deci-
sion theory that escapes multi-step domination is very close to the classical
expected value prevision based on a consistent probability function.

Say that a qualitative prevision is a total preorder � on the set of simple
functions on Ω (i.e., � is transitive and reflexive, and for any f and g we
have the totality condition that f � g or g � f). Write f ≺ g just in case
f � g but not g � f . For a single-shot choice between finite non-empty
set S of utility functions (representing wagers), we can say that � permits
the choice of U from among the members of S provided that U ′ � U for all
U ′ ∈ S.

We can then extend this to individual and cumulative decision theory for
sequences of choices. If at step n we are to choose from the utility functions
in Sn, then on individual decision theory, � permits the choice of U if and
only if U ′ � U for all U ′ ∈ Sn, and on cumulative decision theory, it permits
the choice of U if and only if Un−1 + U ′ � Un−1 + U for all U ′ ∈ Sn, where
Un−1 is the sum of the utility functions already chosen at steps prior to n.

Now, define the quantitative prevision E� corresponding to � as follows:
E�f = sup{c : c · 1Ω � f}.

The following is easy to check:

Proposition 5. If f � g, then E�f ≤ E�g. If E�f < E�g, then f ≺ g.

This means that a binary single-shot decision permitted by � is permitted
by E�, and a binary single-shot decision required by E� is required by �.
However, in general, � might be stricter than E�. For instance, suppose
we start with classical expected utility E for a fair coin flip case, and say
that f ≺ g for two utility functions f and g just in case either (a) Ef < Eg
or (b) Ef = Eg but g assigns a higher value to tails than f does. Then
it is easy to see that E� is our old classical expected utility, but a decision
theory based on � is more discriminating than one based on E�, as it has
a tie-breaker rule for cases of equal expected utility, namely it favors the
utility function that assigns a higher value to tails.

Now, suppose we have a (quantitative) prevision E. Define a qualitative
prevision by saying that f �E g if and only if Ef ≤ Eg. Then the following
is very easy to check:
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Proposition 6. For any quantitative prevision E such that E(c · 1Ω) = c
for all c, we have E�Ef = Ef for all simple f .

A binary choice is a choice between exactly two wagers.

Theorem 3. The following are equivalent for a qualitative prevision �:

(a) E� is expected utility with respect to the finitely-additive probability
measure PE� defined by PE�(A) = E�(1A)

(b) there is no sequence of three binary choices such that � with indi-
vidual decision theory permits one to make a sequence of selections
that is dominated by another sequence of selections one could have
made

(c) there is no sequence of three binary choices such that � with cumu-
lative decision theory permits one to make a sequence of selections
that is dominated by another sequence of selections one could have
made.

The proof is given in the Appendix.

Corollary 4. Suppose P satisfies Zero and Normalization but not Finite

Additivity. Let E be LSI↑P or LSI±P . Then there is a sequence of three binary
choices such that E with individual decision theory permits one to make a
sequence of selections that is dominated by another sequence of selections
one could have made, and the same is true for cumulative decision theory
(with perhaps a different sequence of choices).

Proof. The prevision E satisfies the condition in Proposition 6. Thus
PE�E (A) = E�E (1A) = E(1A) = P (A) by Lemma 1. Since P does not

satisfy Finite Additivity, the conclusions of the Corollary follow from The-
orem 3 applied to �E . �

That said, if E is either LSI↑ or LSI±, and P satisfies Zero, Normalization,
Monotonicity and, in the LSI± case, Binary Non-Disappearance, by Theo-
rem 2 there are no weak failures of single-shot domination. Because of this,
there is a decision procedure for multi-shot cases that is not subject to dom-
ination failures as long as the agent knows ahead of time what choices she
will be offered in the future. For in that case, the agent can simply ahead
of time figure out a sequence of wagers with maximal E-prevision of the
sum of the corresponding utility functions, and simply stick to the wagers
of this sequence once the choices are to be made. The monotonicity of E
then guarantees that no other sequence of wagers would have a dominating
sum of utility functions. We can stipulate that global decision theory is the
theory that permits one to choose any such E-maximizing wager sequence
and requires one to choose some such.

This won’t work if the agent does not know what choices will be offered in
the future. Thus, there is a definite advantage for the expected utility max-
imizer working with consistent credences: she has a procedure that assures
her of non-domination in a sequence of choices even when she does not know
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ahead of time what the future options will be. In fact, her expected utility
maximization procedure does not even require her to remember what wagers
she already accepted (in the way that cumulative decision theory requires),
since in the classical case independent and cumulative decision theory are
equivalent. Theorem 4 and the proof of the Corollary tell us that there isn’t
going to be a quantitative prevision E satisfying the reasonable condition
E(c · 1Ω) = c that allows cumulative or independent deciders to avoid dom-
ination in multi-shot cases, unless E just is mathematical expectation with
respect to some consistent probability measure.

This advantage could be used in place of the invocation of Dutch Books
in arguments for probabilism. However, the resulting arguments would not,
I think, be very compelling. The expected utility maximizer with consistent
credences is shown to have an advantage only in a very special case, that of
sequences of choices such that:

(a) what future choices are offered is not statistically dependent on what
the agent has opted for so far, but

(b) the agent does not know what future choices will be offered.

For brevity, let us now say that P is a monotonic credence assignment if
and only if it satisfies Zero, Normalization and Monotonicity. If one drops
condition (b), an inconsistent reasoner can avoid domination by adopting
global decision theory for inconsistent but monotonic credence assignments

P , and using LSI↑P . In that case, rather than us having an argument for
consistency, we have an argument for monotonicity. On the other hand, if
one drops condition (a), then the situation becomes a two-player game, and
single-step expected utility maximization, even in the classical consistent
case, is too simplistic a strategy to guarantee doing well in such a game. For
instance, we could imagine that we are playing chess with a tyrant, where
we are killed if we lose, but also at earlier steps we get minor prizes or
punishments depending on what move we select. In that case, we definitely
should not decide what to do by maximizing the expected utility of the
immediate payoff of the current step or even of the current step plus the
earlier ones: rather, we need a holistic strategy that maximizes our chance
at winning the whole game.

Admittedly, our holder of inconsistent monotonic credences will need to
have some holistic strategy even when what future choices are offered one
does not depend on one’s past selection, while the holder of consistent cre-
dences will need such a strategy only in cases of such dependence. But this
does not seem to be a sufficiently glaring difference to make it intuitively
clear that the inconsistency is irrational.5

5It is worth noting that while Pettigrew (2019) discusses something similar to multi-
shot domination failure in his critique of Hedden (2013), what makes his case against
Hedden most compelling is the single-shot domination failure that Pettigrew identifies.
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It is worth noting at this point that there is a similarity between our
decision theory for monotonic credences and Lara Buchak’s (2013) risk-
based decision theory, which also rejects Independence. Indeed, Buchak’s
way of calculating risk-modified expected utilities is very similar to Shifted
Level Set Integrals, and likewise strongly favors thinking about decisions in
a temporally global way.

There is an alternative to the temporally-global decision-making, how-
ever.6 Instead of thinking of the decisions as between life-long strategies to
stick to, one can think of the utilities as including all future outcomes, not
just the immediate future outcomes. Indeed, that is a very common way
to think about things. Thus, in the chess game with the tyrant, at every
step, one can take into account the disutility of being killed should one lose,
and calculate one’s expected utilities taking into account the probability
distribution over one’s and one’s opponent’s future moves conditionally on
the various moves one is choosing between now. This yields another deci-
sion theory that one can plug various previsions into while asking whether
unfortunate consequences for multi-step decisions follow given probabilistic
inconsistencies. That is a very interesting question for future investigation.
But at least we now know that there is a fairly natural strategy—the global
decision one—that avoids many of the problems that have been alleged for
inconsistent probabilities given some assumptions on the credences.

5. Lebesgue Sums

There is another prevision that might seem to some readers more natu-
ral than LSI or its variants. Often, but not always7, the Lebesgue integral
mathematical expectation of a non-negative measurable function is defined
by approximating the measurable function with simple functions, and eval-
uating their expectation using the rule

LebP f =
∑
y∈Rf

yP (f = y),

where Rf = {y : ∃ω(f(ω) = y)} is the range of f . If f is simple, Rf is
finite and hence the sum is well-defined. This sum remains well-defined for
simple f (even if it’s not everywhere non-negative) and an inconsistent P .
Thus, we have a Lebesgue Sum prevision on the space of simple functions
that prima facie competes with our Level Set previsions.

The Lebesgue Sum prevision is equivalent to Pettigrew’s (2019) extension
of Hedden’s (2013) MSEUbet to more complex wagers than those considered
by Hedden.

Pettigrew (2019) has shown that Lebesgue Sums suffer from single-shot
domination failure unless the credence is a scaled version of a consistent
credence. That may look like a good reason to think that our Level Set

6I am grateful to a referee for pointing this out.
7Lieb and Loss (2013) proceed via Level Set Integrals, as we have already noted.
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previsions are superior, since for a broad class of inconsistent credences they
do not suffer from such a failure. But if that was the only advantage that
Level Set Integrals had over Lebesgue Sums, we might think that we are ad
hoc opting for Level Set Integrals to avoid domination failure. But there
is another intuitive advantage that Level Set Integrals have, namely that
Proposition 2 shows that they are continuous for all monotonic credence
functions, whereas:

Proposition 7. Suppose P fails Finite Additivity. Then LebP fails conti-
nuity.

The proof of Proposition 7 is given in the Appendix.

6. Conclusions

Level Set Integral decision procedures based on inconsistent but mono-
tonic credence assignments nonetheless escape Dutch Book arguments and
single-shot domination failure. Thus, arguments for consistency on the basis
of Dutch Books and single-shot domination failure are mistaken, in that they
wrongly assume one particular way of computing the value of wagers—the
De Finetti prevision. But an agent with inconsistent credence assignments
is apt to see the De Finetti prevision as inappropriate, because it assigns dif-
ferent values to equivalent wagers, and the Level Set previsions are superior
to the De Finetti prevision given inconsistency. There is also good reason to
think they are superior to a prevision defined in terms of Lebesgue Sums.

The Level-Set Integral procedures—and any procedures like them—will
still fall prey to a certain kind of multi-stage domination failure. But that
domination failure does not seem striking enough to provide a powerful
argument for probabilism. It appears that Dutch Book and domination ar-
guments are not successful in establishing that agents should have consistent
credences.8

Appendix: Some proofs

Proof of Theorem 2. Clearly, (a)⇒(b). We now prove the converse. Assume
(b). Suppose f and g are simple functions such that 0 ≤ f < g everywhere.
Then there is an ε > 0 such that ε + f < g everywhere (e.g., let ε =
(1/2) min(g−f)). By weak monotonicity, LSI(ε+f) ≤ LSI g. By Lemma 1,
we have LSI(ε + f) = ε + LSI f . Thus, ε + LSI f ≤ LSI g, so LSI f < LSI g
as ε > 0. Hence, we have shown (a)⇔(b).

Clearly, (c)⇒(b). For the converse, suppose (b) and suppose that 0 ≤ f ≤
g everywhere. Then for any fixed ε > 0, we have 0 ≤ f < ε+ g everywhere.
By the equivalence of (a) and (b), LSI is strongly monotonic on non-negative
functions, so LSI f ≤ LSI(ε + g) = ε + LSI g (by Lemma 1). Since this is

8I am grateful to Kenny Easwaran, Yoaav Isaacs and Ian Slorach for discussion of these
topics, to two anonymous readers for improving the presentation and fixing a number of
errors, and to one of these referees for pointing out interesting philosophical issues.
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true for any ε > 0, it must be true that LSI f ≤ LSI g, completing the proof
of (b)⇔(c).

Observe that (c) and (d) are equivalent, since LSI↑ f = LSI(M + f) and
LSI↑ g = LSI(M + g) if M is sufficiently large that both M + f and M + g
are non-negative.

Now, assume (a). Let f and g be any simple functions such that f < g
everywhere and suppose M+f is non-negative. Then M+g is non-negative
and M + f < M + g everywhere. Hence LSI(M + f) < LSI(M + g) by (a).
Hence, LSI↑ f < LSI↑ g, and so we have shown (a)⇒(e).

Clearly, (e)⇒(f)⇒(b) (we are using Lemma 1 again). Hence, (a)–(f) are
all equivalent.

Next, (g)⇒(b) by Lemma 1. Now assume (c), and we will prove (g).
Suppose f < g everywhere. Then f+ ≤ g+ and f− ≥ g− everywhere, so
by (c) we have LSI f+ ≤ LSI g+ and LSI f− ≥ LSI g−. Since LSI± f =
LSI f+−LSI f− and likewise for g, it follows that LSI± f ≤ LSI± g, so LSI±

is weakly monotonic, which completes the proof of (g). Hence, (a)–(g) are
all equivalent.

Now suppose that P fails Monotonicity. Then there are events A ⊆ B
such that P (A) > P (B). Note that 1A ≤ 1B everywhere, and LSIP A =
P (A) > P (B) = LSIP B, so condition (c) fails. Hence we have shown that
(c)⇒(h).

Next, assume P satisfies Monotonicity and 0 ≤ f ≤ g. Then {ω : f(ω) >
y} ⊆ {ω : g(ω) > y}, so by Monotonicity P (f > y) ≤ P (g > y) for y.
Integrating over y, we get LSIP f ≤ LSIP g. Hence (h)⇒(c), and so we have
by now shown that (a)–(h) are equivalent.

It remains to show that (i) and (j) are equivalent. First, assume (i).
That P satisfies Monotonicity follows by Lemma 1 from the equivalence of
(a) and (h). Now suppose that Binary Non-Disappearance fails so we have
P (A) = P (B) = 0 for disjoint A and B whose union is Ω. Let f = 1A − 1B
and let g = 1

2 + f . Then f < g everywhere, but it is easy to see that
P (f > 0) = P (g > 0) = P (A) = 0 and P (f < 0) = P (g < 0) = P (B) = 0.
By Monotonicity and Non-negativity, it follows that P (f < −y) = P (g <
−y) = P (f > y) = P (g > y) = 0 for all y ≥ 0, and so LSI±P f = 0 = LSI±P g,

contrary to strong monotonicity of LSI±P . Hence, (i)⇒(j).
Finally, assume (j). Demonstrating (i) will be the hardest part of the

proof of the Theorem. To obtain a contradiction, suppose that P satisfies
Monotonicity and Binary Non-Disappearance, but LSI±P fails to be strongly
monotonic. Thus, there will be f1 and f2 such that f1 < f2 everywhere but
LSI±P f1 ≥ LSI±P f2. Then:

∫ ∞
0

P (f1 > y) dy −
∫ ∞

0
P (f1 < −y) dy

≥
∫ ∞

0
P (f2 > y) dy −

∫ ∞
0

P (f2 < −y) dy.
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Hence,

(2)

∫ ∞
0

[P (f1 > y)− P (f2 > y)] dy ≥
∫ ∞

0
[P (f1 < −y)− P (f2 < −y)] dy.

Now, as f1 < f2, if f1(ω) > y then f2(ω) > y so by Monotonicity P (f1 > y)−
P (f2 > y) ≤ 0, while if f2(ω) < −y, then f1(ω) < −y, so by Monotonicity
P (f1 < −y) − P (f2 < −y) ≥ 0. Thus the left-hand-side of (2) is non-
positive and the right-hand-side is non-negative. Hence both sides must be
zero. But the integrands on both sides are everywhere non-positive and non-
negative respectively, so the integrands must be zero for almost all values
of y (i.e., for all y other than in some Lebesgue null set). But it is easy
to see that the functions y 7→ P (fi > y) and y 7→ P (fi < −y) are right-
continuous when fi is simple, hence the integrands in (2) are right-continuous
and zero almost everywhere, which implies they are zero everywhere (if g
is right-continuous and zero almost everywhere, then for any any x there
is a sequence of xn approaching x from the right such that g(xn) = 0; by
right-continuity, g(x) = limn→∞ g(xn) = 0).

Thus, P (f1 > y) = P (f2 > y) and P (f1 < −y) = P (f2 < −y) for all
y ≥ 0.

Let ε = minω∈Ω(f2(ω) − f1(ω)). (This is positive and defined as f2 >
f1 and both functions are simple.) Then, f2(ω) ≥ f1(ω) + ε. Hence, by
Monotonicity of P , P (f2 > y) ≥ P (f1 > y − ε) ≥ P (f1 > y) for any y ≥ 0.
But P (f2 > y) = P (f1 > y), so for all y ≥ 0, we have P (f1 > y) = P (f1 >
y−ε) and hence for all y ≥ −ε we have P (f1 > y) = P (f1 > y+ε). Iterating
starting with y = −ε we get:

P (f1 > −ε) = P (f1 > 0) = P (f1 > ε) = P (f1 > 2ε) = · · · .

Thus, P (f1 > −ε) = P (f1 > nε) for any natural number n. Choosing n large
enough that f1 be nowhere greater than nε, we will have P (f1 > nε) = 0
and hence P (f1 > −ε) = 0. By Monotonicity and Non-negativity of P , we
have P (f1 ≥ 0) = 0.

Similarly, P (f2 < −y) ≤ P (f1 + ε < −y) ≤ P (f1 < −y) for all y ≥ 0.
Since P (f2 < −y) = P (f1 < −y), it follows that P (f1 < −y − ε) = P (f1 <
−y) for all y ≥ 0. Again, iterating:

P (f1 < ε) = P (f1 < 0) = P (f1 < −ε) = P (f1 < −2ε) = · · · .

Thus, P (f1 < 0) = P (f1 < −nε) for any natural number n. Choosing n large
enough, by Zero we can ensure P (f1 < −nε) = 0, and hence P (f1 < 0) = 0.

Letting A = {ω : f1(ω) ≥ 0} and B = {ω : f1(ω) < 0}, we have A and
B disjoint, with union Ω and with P (A) = P (B) = 0, contradicting Binary
Non-Disappearance. �

Proof of Proposition 2. First, observe that if f and g are non-negative and
|f − g| < ε/2 everywhere, then

P (f − ε/2 > y) ≤ P (g > y) ≤ P (f + ε/2 > y)
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by Monotonicity, since if f(ω) − ε/2 > y, then g(ω) > y and if g(ω) > y,
then f(ω) + ε/2 > y. But∫ ∞

0
P (f − ε/2 > y) dy =

∫ ∞
ε/2

P (f > y) dy ≥
∫ ∞

0
P (f > y)− ε/2,

where the last inequality used Normalization and Monotonicity which to-
gether show that P (A) ≤ 1 always. Moreover∫ ∞

0
P (f + ε/2 > y) dy =

∫ ∞
−ε/2

P (f > y) dy ≤
∫ ∞

0
P (f > y) + ε/2.

It follows that
LSI f − ε/2 ≤ LSI g ≤ LSI f + ε/2

and hence that |LSI f − LSI g| ≤ ε.
Now suppose f and g are any simple functions such that |f − g| < ε/2

everywhere. Let c be a constant such that c + f and c + g are both non-
negative. Then

|LSI↑ f − LSI↑ g| = |LSI(c+ f)− LSI(c+ g)| ≤ ε,
by what we have proved above, since if |f − g| < ε/2, likewise |(c + f) −
(c + g)| < ε/2. Letting δ = ε/2, we see that the definition of continuity is
satisfied in the case of LSI↑.

Now, suppose that f and g are any simple functions such that |f−g| < ε/4
everywhere. Then it is easy to see that |f+ − g+| ≤ |f − g| < ε/4 and
|f− − g−| ≤ |f − g| < ε/4 everywhere. It follows from what was proved
above and by the triangle inequality that:

|LSI± f − LSI± g| = |LSI f+ − LSI g+ − (LSI f− − LSI g−)|
≤ |LSI f+ − LSI g+|+ |LSI f− − LSI g−|
≤ ε/2 + ε/2 = ε.

Letting δ = ε/2, we see that the definition of continuity is satisfied in the
case of LSI±. �

Suppose � is a qualitative prevision and let P (A) = E�(1A).

Lemma 2. Suppose that � satisfies strong monotonicity. Then E�(c·1Ω) =
c for all c, and P satisfies Zero, Non-negativity and Normalization. More-
over, for any simple f and any real ε > 0, we have:

(−ε+ E�f) · 1Ω ≺ f ≺ (ε+ E�f) · 1Ω.

Proof. Let f = c · 1Ω and g = c′ · 1Ω. If f � g, we don’t have f > g
everywhere, and hence we must have c ≤ c′. The converse is also true. For
if c ≤ c′, then by totality of �, either g � f or f � g. If we have g � f , then
by the above argument with g and f swapped, we conclude that c′ ≤ c and
hence c = c′ and f = g and so f � g by reflexivity. So either way, f � g.

It follows from this and the definition of E� that E�(c · 1Ω) = c. Now,
1∅ = 0 · 1Ω, so P (∅) = 0, and P (Ω) = E�(1 · 1Ω) = 1. This yields Zero
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and Normalization. To prove Non-negativity, choose an event A and fix any
ε > 0. Observe that 1A > −ε · 1Ω. Therefore, by strong monotonicity, we
cannot have 1A � −ε · 1Ω, and so we must have −ε · 1Ω � 1A by totality.
Therefore, E�(1A) ≥ −ε. Since this is true for all ε > 0, it follows that
E�(1A) ≥ 0 and hence we have Non-negativity.

Now, to obtain a contradiction suppose that we do not have (−ε+E�f) ·
1Ω ≺ f . Then by totality f � (−ε+E�f) ·1Ω. Choose c such that c ·1Ω � f
and c > E�f − ε/2 (such a c exists by definition of the supremum). Then
c · 1Ω � (−ε + E�f) · 1Ω. Hence, by strong monotonicity, c ≤ −ε + E�f .
Thus, E�f − ε/2 < c ≤ −ε + E�f , which is impossible. Thus, indeed,
(−ε+ E�f) · 1Ω ≺ f .

Finally, suppose we do not have f ≺ (ε + E�f) · 1Ω. Then, (ε + E�f) ·
1Ω � f , and hence ε + E�f ≤ E�f by definition of E�f . And that’s
impossible. �

Say that � satisfies the sixtuple condition if there are no f1, f2, f3, g1,
g2 and g3 such that fi � gi for i = 1, 2, 3, but f1 + f2 + f3 > g1 + g2 + g3

everywhere. Say � is strongly monotonic provided that if f � g, then we
cannot have f > g everywhere. It is clear that the sixtuple condition implies
strong monotonicity (just let fi = gi = 0 for i = 2, 3).

Lemma 3. Suppose that � satisfies the sixtuple condition. Then, P is a
finitely additive probability.

Proof. Lemma 2 gives us Non-negativity and Normalization. Finite Addi-
tivity remains to be proved. Suppose A and B are disjoint. Fix any ε > 0.
Let f1 = 1A, f2 = 1B and f3 = −1A∪B. Then by Lemma 2 and the definition
of P :

(−ε+ P (A)) · 1Ω ≺ f1 ≺ (ε+ P (A)) · 1Ω

(−ε+ P (B)) · 1Ω ≺ f2 ≺ (ε+ P (B)) · 1Ω

(−ε− P (A ∪B)) · 1Ω ≺ f3 ≺ (ε− P (A ∪B)) · 1Ω.

Observe that f1 + f2 + f3 = 0 everywhere. By two applications of the
sixtuple condition, it follows that

−3ε+ P (A) + P (B)− P (A ∪B) ≤ 0 ≤ 3ε+ P (A) + P (B)− P (A ∪B).

The only way this can be true for all ε > 0 is if P (A)+P (B)−P (A∪B) = 0.
Hence Finite Additivity holds. �

Proof of Theorem 3. If (a) is true, then (b) and (c) are true. The individual
and cumulative decision methods are equivalent given the mathematical
expectation prevision and consistent credences. Mathematical expectation is
additive, i.e., E(f+g) = Ef+Eg, and so if one maximizes utility expectation
in each choice, one maximizes the expectation of the sum of the utilities.
But if E(f1 + f2 + f3) ≤ E(g1 + g2 + g3), then we cannot have g1 + g2 + g3 <
f1 + f2 + f3 everywhere. For if we had that, then there would be an ε > 0
such that ε+ g1 + g2 + g3 < f1 + f2 + f3 everywhere (this follows from the
fact that we are dealing solely with functions that take on a finite number
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of values). But then we would have E(ε + g1 + g2 + g3) ≤ E(f1 + f2 + f3)
and hence ε + E(g1 + g2 + g3) ≤ E(f1 + f2 + f3) which is impossible if
E(f1 + f2 + f3) ≤ E(g1 + g2 + g3).

It remains to show that each of (b) and (c) implies (a). By Lemma 3 all
we need to show is that each of (b) and (c) implies the sixtuple condition.

Assume (b). Suppose that we have a violation of the sixtuple condition,
so fi � gi for i = 1, 2, 3 but f1 +f2 +f3 > g1 + g2 + g3 everywhere. Consider
an agent choosing between f1 and g1, then between f2 and g2, and then
between f3 and g3. Individual decision theory permits the agent to choose
gi in each case. But since f1 + f2 + f3 > g1 + g2 + g3 everywhere, this would
result in the agent getting dominated, which would violate (b).

The case of (c) is a little trickier. To obtain a contradiction, assume (c)
and suppose that we have a violation of the sixtuple condition, so fi � gi
for i = 1, 2, 3 but f1 + f2 + f3 > g1 + g2 + g3 everywhere. Now, let

F1 = f1

G1 = g1

F2 = f2 −G1

G2 = g2 −G1

F3 = f3 −G1 −G2

G3 = g3 −G1 −G2.

Suppose our agent is offered binary choices between Fi and Gi, for
i = 1, 2, 3, at the three successive stages. Cumulative decision theory then
permits the choice of G1 over F1 at the first step, since F1 = f1 � g1 = G1.
At the next stage, given the prior choice of G1, it permits the choice of G2

over F2 since G1 +F2 = f2 ≺ g2 = G1 +G2. Given the agent’s having chosen
G1 and G2, at the final stage the agent will permitted to choose G3 over F3

since G1 +G2 + F3 = f3 � g3 = G1 +G2 +G3.
But

f1 + f2 + f3 = F1 + (F2 +G1) + (F3 +G1 +G2) = F1 + F2 + F3 + 2G1 +G2

and

g1 + g2 + g3 = G1 + (G2 +G1) + (G3 +G1 +G2) = G1 +G2 +G3 + 2G1 +G2.

Since we have f1 + f2 + f3 > g1 + g2 + g3 everywhere, we must also have
F1 + F2 + F3 > G1 + G2 + G3, and so the sum of the E�-permissibly
chosen (under cumulative decision theory) utility functions G1 +G2 +G3 is
dominated by F1 + F2 + F3, which contradicts (c). �

Proof of Proposition 7. Suppose A and B are disjoint. Let C = Ω−(A∪B).
Suppose ε is a non-zero real number. Let f = 1A + (1 + ε) · 1B and g =
ε+ 1A∪B. Then

LebP f = P (A) + (1 + ε)P (B)

and
LebP g = (1 + ε)P (A ∪B) + εP (C).
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Let η = 1
4 |P (A) + P (B) − P (A ∪ B)|. Let h = 1A∪B. Suppose that we

have continuity, so there is a α > 0 such that for any function u such
that |h − u| ≤ α, we have |LebP h − LebP u| ≤ η. Let ε be any number
strictly between 0 and α. Then |f − h| < α and |g − h| < α everywhere.
Then |LebP h − LebP f | ≤ η and |LebP h − LebP g| ≤ η. By the triangle
inequality, |LebP f − LebP g| ≤ 2η. But

LebP f − LebP g = P (A) + (1 + ε)P (B)− (1 + ε)P (A ∪B)− εP (C).

We saw the left-hand-side can be no bigger than 2η in absolute value for
every ε strictly between 0 and α. Hence:

|P (A) + (1 + ε)P (B)− (1 + ε)P (A ∪B)− εP (C)| ≤ 2η.

Taking the limit as ε approaches 0 from above, we conclude that

|P (A) + P (B)− P (A ∪B)| ≤ 2η =
1

2
|P (A) + P (B)− P (A ∪B)|.

The only way this can be true is if P (A) + P (B) − P (A ∪ B) = 0. Thus,
from continuity we get Finite Additivity. �
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